Servizi di zincatura statica e rotativa dal 1952

ZINCATURA RODIGHIERO S.r.I.

QUADRO PROGETTUALE

Ente Competente:

PROVINCIA DI VICENZA

Area Servizi al Cittadino e al Territorio
Settore Ambiente – Servizio V.I.A.

Progetto:

POTENZIAMENTO IMPIANTISTICO

Committente:

Zincatura Rodighiero S.r.l.

Località:

MONTECCHIO MAGGIORE (VI) - Via I MAGGIO, n. 3

Data:

Giugno 2025

Legale Rappresentante

Maurizio Rodighiero

Responsabile del S.I.A.

dott. Mariano Farina

Autori

arch. Roberta Patt arch. Loris Villa dott.ssa Annalisa Capolupi

Protocollo p_vi/aooprovi GE/2025/0035126 del 30/07/2025 - Pag. 2 di 67

Studio Impatto Ambientale

INDICE

1.	. PR	EMESSA	3
	1.1.	SOGGETTO PROPONENTE	4
	1.2.	ubicAZIONE	5
	1.3.	STORIA AZIENDALE	5
	1.4.	QUADRO AUTORIZZATIVO	6
	1.5.	QUADRO NORMATIVO P.A.U.R.	7
	1.6.	METODO DELLO STUDIO DI IMPATTO AMBIENTALE	8
	1.7.	MOTIVAZIONE DELLO STUDIO DI IMPATTO AMBIENTALE	10
	1.8.	NATURA DEI BENI E DEI SERVIZI OFFERTI	10
	1.9.	GRADO DI COPERTURA DELLA DOMANDA - IPOTESI ZERO	10
	1.10.	EVOLUZIONE DEL RAPPORTO DOMANDA OFFERTA	11
2.	. LO	CALIZZAZIONE	12
	2.1	Inquadramento Territoriale	14
3.	. svi	luppo del progetto	16
	3.1	CICLO TECNOLOGICO	17
	3.2	materie prime, TECNICHE E SOTTOPRODOTTI	23
	3.3	MAGAZZINI - STOCCAGGI	29
4.	. sist	temi di contenimento degli inquinanti	31
	4.1	EMISSIONI IN ATMOSFERA	31
	4.2	GESTIONE ACQUE	35
	4.3	Gestione rifiuti	47
	4.4	ELEMENTI DI IMPATTO SITUAZIONE ATTUALE	48
5.	. PR	OGETTO - MODIFICHE e interventi	49
	5.1	VARIAZIONI	53
	5.2	ELEMENTI DI IMPATTO FUTURI	62
	5.3	DEFINIZIONE AREA DI INDAGINE	63
6.	. fas	e di cantiere	64
	6.1	ELEMENTI DI IMPATTO IN FASE DI CANTIERE	65

ALLEGATI:

In riferimento agli allegati AIA

Allegato A14: Mappa catastale in scala 1:2000 o 1:4000

Allegato A18: Concessione di derivazione acqua di falda

Allegato A25: Schemi a blocchi

Studio Impatto Ambientale

Situazione ATTUALE

All. B19 Planimetria dell'approvvigionamento e distribuzione idrica e dei sistemi di trattamento All. B20 Planimetria dello stabilimento con individuazione dei punti di emissione e trattamento degli scarichi in atmosfera

All. B21 Planimetria delle reti fognarie meteoriche e dei punti di emissione degli scarichi liquidi All. B22 Planimetria dello stabilimento con individuazione delle aree per lo stoccaggio di materie e rifiuti

All. B23- B24 Valutazione Impatto Acustico

All. B26 Registrazione delle misure delle emissioni in atmosfera effettuate nell'anno di riferimento

All. B27 Registrazione delle misure delle emissioni in acqua effettuate nell'anno di riferimento

Situazione FUTURA

All. C7: Nuovo Schema a blocchi

All. C8: Planimetria modificata dell'approvvigionamento e distribuzione idrica e dei sistemi di trattamento

Suddivisa nei due piani modificati dell'installazione

All. C9: Planimetria modificata dello stabilimento con individuazione dei punti di emissione e trattamento degli scarichi in atmosfera

All. C10: Planimetria modificata delle reti fognarie, dei sistemi di trattamento, dei punti di emissione degli scarichi liquidi e della rete piezometrica

All. C11: Planimetria con individuazione delle aree per lo stoccaggio di materie e rifiuti

Studio Impatto Ambientale

1. PREMESSA

Il presente Studio di Impatto Ambientale, commissionato dalla Zincatura Rodighiero S.r.I., con sede legale e operativa nel Comune di Montecchio Maggiore, (VI), Via I Maggio, n. 3, è finalizzato ad investigare gli impatti ambientali futuri dovuti al potenziamento delle linee di zincatura.

L'attività della Zincatura Rodighiero S.r.l. consiste nel trattamento di zincatura elettrolitica a freddo eseguiti su materiale ferroso e rientra nelle categorie di attività interessate dall'autorizzazione integrata ambientale (AIA), D.Lgs. 152/06, Parte II, Allegati VIII, Punto 2 "Produzione e trasformazione dei metalli", punto 2.6, "*Trattamento di superficie di metalli o materie plastiche mediante processi elettrolitici o chimici qualora le vasche destinate al trattamento utilizzate abbiano un volume superiore a 30 m³"*.

L'attività è legittimata con Autorizzazione Integrata Ambientale n. 10/2010, protocollo n. 35522 del 17/05/2022, per 105 metri cubi di vasche attive.

L'oggetto della Valutazione di Impatto Ambientale è la diversificazione della tipologia produttiva, che implica l'aumento del volume di vasche attive, attraverso lo sviluppo di un secondo trattamento statico e uno a rotobarile, sino a circa 240 m³ di vasche attive.

L'attività di trattamento superficiale dei metalli rientra nell'Allegato IV "Progetti sottoposti alla Verifica di assoggettabilità di competenza delle regioni e delle province autonome di Trento e Bolzano" alla Parte II del D.Lgs. 152/06 e s.m.i., nello specifico, nel punto 3. "Lavorazione dei metalli e dei prodotti minerali", lettera f) "impianti per il trattamento di superficie di metalli e materia plastiche mediante processi elettrolitici o chimici qualora le vasche destinate al trattamento abbiano un volume superiore a 30 m³".

Si presenta uno Studio di Impatto Ambientale, vista l'entità dell'aumento richiesto.

Lo Studio di Impatto Ambientale è costituito da tre Quadri di riferimento: Programmatico, Progettuale e Ambientale, oltre alla Sintesi Non Tecnica che è un sunto dei tre elaborati. All'interno di uno Studio di Impatto Ambientale, il Quadro Progettuale descrive il progetto e le soluzioni adottate a seguito degli studi effettuati, nonché l'inquadramento nel territorio, inteso come sito e come area vasta interessati. Nel capitolo "1.6 Metodo dello Studio di Impatto Ambientale" sono affrontati i contenuti del Quadro Progettuale e la relazione fra quest'ultimo e gli altri due Quadri di riferimento: Programmatico e Ambientale.

Studio Impatto Ambientale

1.1. SOGGETTO PROPONENTE

Nella tabella sottostante vengono elencati i dati della ditta proponente:

DATI AZIENDALI								
Ragione sociale	ZINCATURA RODIGHIERO S.r.I.							
C. F.	02953650245							
P.IVA	02953650245							
Indirizzo sede legale	Via I Maggio, n. 3 – 36075 Montecchio Maggiore (VI)							
Indirizzo sito produttivo	Via I Maggio, n. 3 – 36075 Montecchio Maggiore (VI)							
Telefono	0444 499232							
Fax	0444 499262							
e-mail	direzione@rodighiero.com							
e-mail PEC	zinc.rodighierosrl@pec.it							
Legale rappresentante:	Maurizio Rodighiero							
Responsabile Settore Ambiente	Maurizio Rodighiero							
Referenti per eventuali comunicazioni o sopralluoghi di verifica	Andrea Rodighiero, Alberto Rodighiero							
ATTIVITA' LAVORATIVA N	NELL'INSTALLAZIONE OGGETTO DI P.A.U.R.							
Giorni lavorativi anno	275							
Ore di Attività /giorno	16							
Numero addetti attività	15							
Operai	11							
	AREA							
Titolarità dell'area	Affitto ad IMMOBILIARE GUALDA SRL							
Superficie	3.337,40 m ² coperti 2.540,81 m ² scoperta pavimentata 182,79 m ² scoperta permeabile 6.061 m ² totali							
Catasto (Allegato A14)	Foglio 20, mappale 98 Comune di Montecchio Maggiore							
	ZIONI AMBIENTALI IN ESSERE							
Autorizzazione Integrata Ambientale	AUTORIZZAZIONE INTEGRATA AMBIENTALE 10/10							
CER	TIFICAZIONI IN ESSERE							
UNI EN ISO 9001	Certificazione di qualità							

Tabella 1 : Dati Generali

Studio Impatto Ambientale

1.2. UBICAZIONE

Di seguito un'immagine satellitare con l'ubicazione della Zincatura Rodighiero S.r.l.

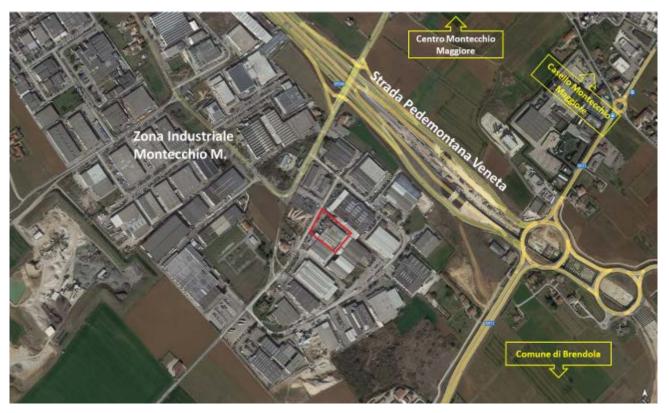


Figura 1: Ubicazione territoriale del sito di indagine

1.3. STORIA AZIENDALE

Zincatura Rodighiero oggi è una moderna azienda le cui origini risalgono agli albori della galvanica, fondata da Otello Rodighiero nel 1952.

Agli inizi l'azienda eseguiva il trattamento superficiale di cromatura, specializzandosi poi, negli anni a seguire, su un unico trattamento superficiale, quello della zincatura.

Con il subentro direzionale della seconda generazione, nella persona di Maurizio Rodighiero, l'azienda cambia la denominazione sociale di Zincatura Rodighiero Otello e Figli.

Maurizio Rodighiero, attuale legale rappresentante, ha acquisito l'esperienza ed il know-how del padre, e ha proseguito l'attività.

L'avvento della nuova generazione consolida ed espande il proprio mercato attraverso l'applicazione di nuove finiture e la consueta attenzione per la qualità e la precisone.

Studio Impatto Ambientale

1.4. QUADRO AUTORIZZATIVO

1.4.1. AUTORIZZAZIONE INTEGRATA AMBIENTALE (AIA)

L'azienda rientra negli adempimenti della Direttiva IPPC (Dir. 2008/1/CE, Dir. 96/61/CE), Decreto Legislativo 152/2006 e s.m.i., Parte II, Allegato VIII, punto 2 "Produzione e trasformazione dei metalli" per l'attività di "2.6 trattamento di superficie di metalli o materie plastiche mediante processi elettrolitici o chimici qualora le vasche destinate al trattamento utilizzate abbiano un volume superiore a 30 m³".

La Provincia di Vicenza, con protocollo n. 35522 del 17/05/2010, ha autorizzato la Zincatura Rodighiero S.r.l., con sede legale e di impianto in Via I° Maggio, n. 3, 36075 Montecchio Maggiore con A.l.A. n. 10/10.

La domanda di riesame complessivo, con valenza di rinnovo è stata regolarmente presentata il 13/05/2020.

Per le attività di trattamento superficiale di metalli e plastica è disponibile un BREF dell'agosto del 2006 e il D.M. del 2008.

1.4.2. NORMATIVA PREVENZIONE INCENDI

In data 11/03/2024 è stato presentato attraverso SUAP il rinnovo periodico di conformità antincendio. Il riferimento della pratica VVF è n. protocollo n° 30834.

L'attività produttiva così come descritta, con lavorazioni a freddo non comportanti la fusione di metalli e non producendo metalli, non rientra tra quelle elencate nell'Allegato I del D.P.R. 151/2011, quindi non risulta soggetta al DPR stesso.

La Centrale Termica invece rimane soggetta al DPR 151/2011 così come da Rinnovo VV del 2024. Rimane l'obbligo di eseguire la revisione semestrale dei presidi antincendio esistenti nell'attività, la presenza della segnaletica di sicurezza e di emergenza, gli obblighi di formazione/informazione antincendio per gli addetti.

Studio Impatto Ambientale

1.5. QUADRO NORMATIVO P.A.U.R.

Normativa nazionale

Ai sensi dell'art. 27-bis del D. Lgs. 152/06 e s.m.i. è necessario presentare una domanda di Provvedimento Autorizzatorio Unico Regionale, allegando la documentazione e gli elaborati progettuali previsti dalle normative riguardanti la Valutazione di Impatto Ambientale e l'Autorizzazione Integrata Ambientale, per consentire la compiuta istruttoria tecnico-amministrativa finalizzata al rilascio di tutte le autorizzazioni, intese, concessioni, licenze, pareri, concerti, nulla osta e assensi comunque denominati, necessari alla realizzazione e all'esercizio del medesimo progetto. La Valutazione di Impatto Ambientale (di seguito V.I.A.) è regolamentata dal Titolo III, Parte Seconda del D.Lgs. n. 152/2006 e s.m.i.

La normativa IPPC per il rilascio dell'Autorizzazione Integrata Ambientale è regolamentata dal Titolo III-bis, Parte Seconda del D.Lgs. n. 152/2006 e s.m.i.

Normativa tecnica nazionale

I contenuti dello Studio di Impatto Ambientale (di seguito S.I.A.) sono definiti dall'art. 22 "Studio di impatto ambientale" del D.Lgs. 152/2006 e s.m.i., articolo che rimanda all'Allegato VII della Parte II dello stesso decreto.

Normativa Regionale

Nel BUR n. 70 del 31/05/2024, è stata pubblicata la Legge Regionale del 27 maggio 2024, n. 12 "Disciplina regionale in materia di valutazione ambientale strategica (VAS), valutazione di impatto ambientale (VIA), valutazione d'incidenza ambientale (VINCA) e autorizzazione integrata ambientale (AIA)".

Tale Legge ridefinisce le competenze delle Province in materia di Valutazione di Impatto Ambientale (art. 9) ed in materia di Autorizzazione Integrata Ambientale (art. 20). In riferimento agli allegati A e B, Allegato A "Ripartizione delle competenze tra Regione e Province in materia di VIA e di Verifica di assoggettabilità" e Allegato B "Ripartizione delle competenze tra Regione e Province in materia di Autorizzazione Integrata Ambientale", si evince che la competenza, sia per il procedimento di V.I.A. che per quello di A.I.A. del Progetto oggetto di studio, è in capo alla Provincia territorialmente competente.

Normativa tecnica Regionale

Il 31 maggio 2024 è stata pubblicata sul B.U.R. n. 70 la Legge Regionale 27/05/2024, n. 12 "Disciplina regionale in materia di valutazione ambientale strategica (VAS), valutazione di impatto ambientale (VIA), valutazione d'incidenza (VINCA) e autorizzazione integrata ambientale (AIA)". L'ambito di applicazione della VIA è normato al punto b) ovvero nel Capo III della suddetta Legge, mentre al punto d) ovvero nel Capo V è normata l'autorizzazione interata ambientale.

Studio Impatto Ambientale

Gli applicativi della L.R. 12/2004 in merito alle procedure sono contenuti nell'Allegato A al Regolamento regionale 2/2005.

1.6. METODO DELLO STUDIO DI IMPATTO AMBIENTALE

Lo Studio di Impatto Ambientale è suddiviso nelle seguenti sezioni:

- Quadro di riferimento Programmatico;
- Quadro di riferimento Progettuale;
- Quadro di riferimento Ambientale.

Il Quadro Programmatico fornisce la descrizione dell'ambiente attraverso gli strumenti di pianificazione e di programma messi a disposizione dagli enti competenti nella gestione del territorio. Il Quadro Programmatico va ad esaminare gli strumenti pianificatori, partendo dalla scala regionale, fino ad arrivare alla scala locale: si sceglie questa metodologia di analisi per evidenziare dapprima le caratteristiche dell'area vasta, per poi scendere nei dettagli, fino alla valutazione della localizzazione specifica dell'intervento.

Per garantire la salubrità e la sicurezza pubblica, nel rispetto della normativa nazionale ed europea, la Regione indica il percorso da seguire attraverso dei piani di settore che mirano a normare e regolare, con più chiarezza e dettaglio, gli aspetti di maggior fragilità e criticità del contenitore "ambiente".

Questo procedimento ha lo scopo di fornire gli elementi conoscitivi in merito alla relazione tra il Progetto proposto ed il territorio, così come descritto e tutelato dagli strumenti pianificatori vigenti.

Il Quadro Progettuale descrive nel dettaglio il Progetto, le scelte progettuali, le misure, i provvedimenti ed interventi che il proponente ritiene opportuno adottare, ai fini del migliore inserimento dell'opera nell'ambiente, nonché l'inquadramento nel territorio, inteso come sito e come area vasta interessati. Inoltre, sono evidenziati gli effetti ambientali che le azioni di progetto inducono sulle componenti ambientali individuate: queste interrelazioni sono approfondite e rimarcate all'interno del Quadro Ambientale.

Il Quadro Ambientale approfondisce quanto emerso nel Quadro Programmatico e nel Quadro Progettuale; esso descrive l'Analisi dello stato dell'Ambiente e l'Analisi della Compatibilità dell'Opera.

L'Analisi dello stato dell'Ambiente illustra i principali fattori ambientali che definiscono l'ambiente nell'area di studio *ante operam*, seguendo le indicazioni dei "Linee Guida SNPA 28/2020".

Le particolarità, i vincoli e gli aspetti di correlazioni territoriale ed ambientale, emersi nel Quadro Programmatico, e gli effetti ambientali, emersi nel Quadro Progettuale, sono approfonditi nel Quadro Ambientale, dove sono descritti i fattori ambientali in dettaglio e l'Analisi della Compatibilità

Protocollo p_vi/aooprovi GE/2025/0035126 del 30/07/2025 - Pag. 11 di 67

Quadro Progettuale

Studio Impatto Ambientale

dell'Opera mette in correlazione i fattori ambientali descritti e gli elementi di interesse emersi negli altri quadri con i fattori di impatto, che altro non sono che gli effetti ambientali generati dall'attività.

La Valutazione di Impatto è la fase della V.I.A. in cui si passa da una stima degli impatti previsti sulle diverse componenti ambientali, ad una valutazione dell'importanza che la variazione prevista, per quella componente o fattore ambientale, assume in quel particolare contesto.

Per fare ciò, si definiscono i criteri ed una scala convenzionale qualitativa, che consente di comparare l'entità dei diversi impatti sulle componenti ambientali e di compiere una serie di operazioni tese a valutare l'impatto complessivo.

Studio Impatto Ambientale

1.7. MOTIVAZIONE DELLO STUDIO DI IMPATTO AMBIENTALE

La Zincatura Rodighiero S.r.I., azienda fondata negli anni '50 del secolo scorso, è impegnata in un processo di ampliamento impiantistico.

Lo stabilimento attuale dispone di due linee produttive: zincatura alcalina statica e zincatura acida rotobarile.

Per poter mantenere ed espandere, nel prossimo futuro, la posizione nel mercato italiano, l'azienda ha intenzione di differenziare la tipologia di trattamento e quindi di aumentare il volume delle vasche attive.

Non essendo mai stata sottoposta ad un adeguato studio di impatto ambientale, si è scelto di sottoporre l'ampliamento impiantistico ad una Valutazione di Impatto Ambientale con la necessaria richiesta di una nuova autorizzazione ambientale.

1.8. NATURA DEI BENI E DEI SERVIZI OFFERTI

La Zincatura Rodighiero esegue trattamenti di zincatura elettrolitica attraverso un processo mediante il quale viene applicato un rivestimento superficiale di zinco su un manufatto in acciaio per offrirgli la giusta protezione catodica dalla corrosione.

Con questo procedimento, l'Azienda è in grado di trattare componenti metalliche, destinate in particolare alla logistica da magazzino, e non solo.

A complemento del servizio al cliente, l'Azienda è in grado di eseguire controlli di spessore e resistenza alla corrosione in nebbia salina (presso terzi).

Lo stabilimento di Montecchio Maggiore è ubicato su una superficie di 6.061 m², di cui 3.337,4 m² di area coperta ad uso industriale e la restante quota dedicata a magazzino scoperto, vie di transito e parcheggio.

1.9. GRADO DI COPERTURA DELLA DOMANDA - IPOTESI ZERO

L'Azienda, come anzidetto, si propone il mantenimento delle posizioni di mercato, oltre a cogliere le nuove opportunità che si presentassero, soddisfacendo le richieste dei clienti per qualità prodotto e servizio.

Nell'ipotesi di non realizzare quanto già esposto (IPOTESI ZERO) l'azienda dovrebbe desistere dal proposito di completare la differenziazione produttiva con un grave danno economico per l'azienda stessa.

Studio Impatto Ambientale

Si fa presente che l'implementazione di nuovi trattamenti, apporterà dei benefici ambientali significativi alla gestione dell'attività, in quanto i nuovi trattamenti saranno ad alta e nuova tecnologia, dotati di aspirazioni.

Per quel che riguarda il consumo acqua, non si chiederanno modifiche a ciò che è a tutt'oggi autorizzato dalla Regione Veneto.

1.10. EVOLUZIONE DEL RAPPORTO DOMANDA OFFERTA

Mercato di riferimento principale è il nord Italia senza precludere il resto della penisola e aree EU. Per tipologia di trattamenti e dimensione della struttura, l'Azienda è fra i principali operatori del mercato nazionale, una presenza storica, che nel tempo ha potuto acquisire una solida reputazione per qualità, affidabilità e servizio.

La composizione della clientela è diversificata, monitorata sui rating commerciali, abbraccia molteplici categorie del tessuto produttivo e svariati mercati di destinazione.

Coerentemente con quanto finora relazionato, l'Azienda, attraverso la sua clientela partecipa a molteplici filiere produttive e mercati di destinazione: il principale è la logistica da magazzino e opera anche nei mercati dell'automotive, delle componenti per macchine utensili, arredo, elettrico ed elettronico, alimentare, impianti di trasporto persone, macchine agricole, edilizia.

2. LOCALIZZAZIONE

L'attività si localizza nel Comune di Montecchio Maggiore, provincia di Vicenza, il cui territorio confina a Nord – Est, Est con i Comuni di Sovizzo e Altavilla Vicentina, a Sud-Est con il Comune di Brendola, a Sud Ovest con il Comune di Montebello Vicentino, ad Ovest con il Comune di Zermeghedo, Montorso Vicentino ed Arzignano, a Nord - Ovest con il Comune di Trissino e a Nord con il Comune di Castelgomberto. Tutti i comuni citati sono in Provincia di Vicenza.

Il territorio comunale è costituito da una superficie di 30,54 km². Il Comune è attraversato da Sud Est a Nord dalla Pedemontana Veneta, che si collega all'autostrada A4 con degli svincoli situati in territorio comunale, che ospita anche il casello autostradale "Montecchio Maggiore" della A4.

Per quel che riguarda la viabilità regionale attraversano il comune da Nord Est a Su Ovest, nella parte più a Sud del territorio, la Strada Regionale 11, la Strada Provinciale 34 e la linea ferroviaria dell'alta velocità.

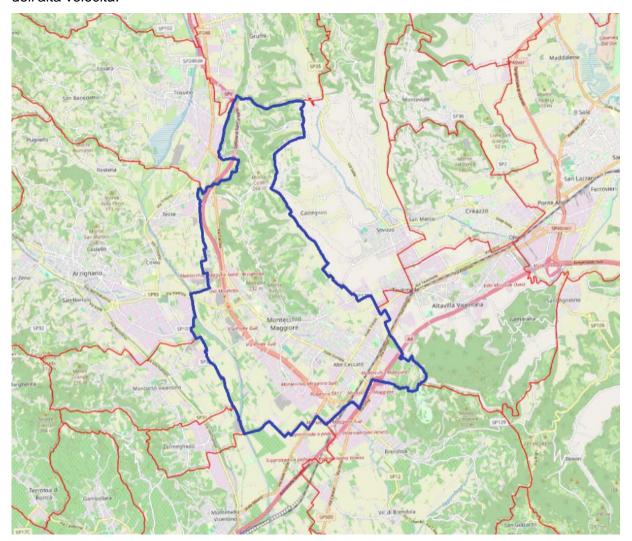


Figura 2: Localizzazione di Montecchio Maggiore (VI)

Studio Impatto Ambientale

La figura seguente riporta la localizzazione dell'attività nel territorio comunale.

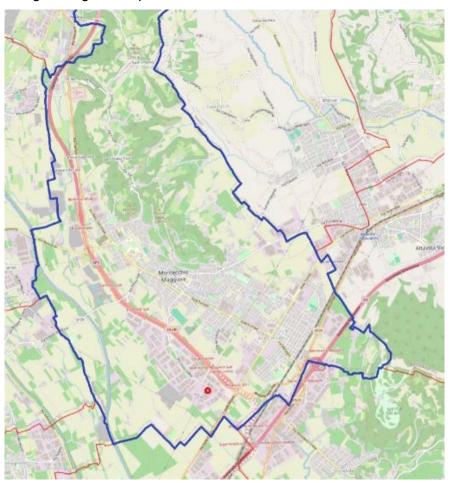


Figura 3: localizzazione ditta Zincatura Rodighiero in territorio comunale

Figura 4: Immagine satellitare del 2021 con localizzazione del sito in giallo e confine comunale in rosso

Studio Impatto Ambientale

2.1 INQUADRAMENTO TERRITORIALE

Di seguito l'estratto del P.R.G. del Comune di Montecchio Maggiore (VI), Variante Generale di assestamento 2004 – D.G.R.V 2121/2007 – D.G.R.V. 815/2008 e successive varianti puntuali.

Il sito occupato dalla ditta è indicato con un bordo rosso, risulta in Zona Territoriale Omogenea D1 e nella fascia di rispetto dell'elettrodotto. Verso i confini di Nord Est, Sud Est e Sud Ovest il sito confina con aree D1, mentre verso Nord Ovest confina con Via I Maggio. Al di là di via I Maggio vi è un'area dedicata a Zona F (servizi).

Di seguito i riporta il significato dei numeri 65 e 83:

- 65 Impianti ENEL
- 83 Giardino pubblico di quartiere

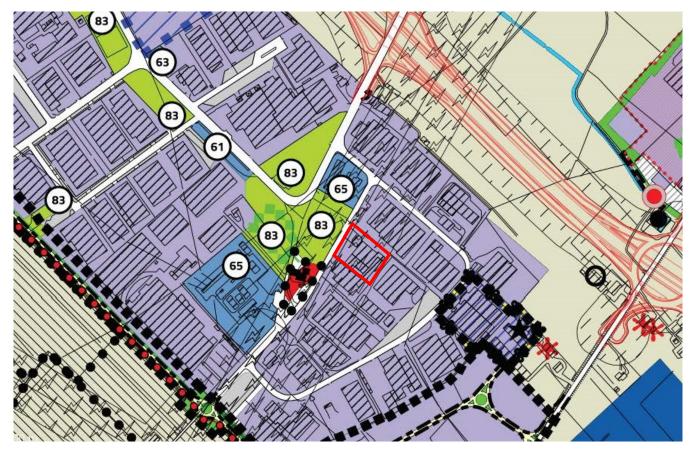


Figura 5: Estratto P.R.G.

Studio Impatto Ambientale

Si riporta la Legenda del P.R.G.

Figura 6: Legenda P.R.G.

Al di là di Via I Maggio, verso Ovest è presente una zona A1s "Aree fabbricati di valore architettonico o ambientale", per la cui valutazione si invia al Quadro Programmatico e conseguentemente al Quadro Ambientale.

Vi sono delle abitazioni singole all'interno della zona D1 (120- 200 metri dal sito) e la prima zona residenziale è a 700 metri.

Dal punto di vista catastale l'area insiste sul Foglio n. 20, part. 98 Comune di Montecchio Maggiore (VI).

Di seguito le coordinate geografiche:

	WGS84 GMS	WGS84 GD	Piane UTM ED50
Longitudine	11°24'57.28"	11.4159111111111	688877.139 metri Est
Latitudine	45°29'10.37"	45.48621388888889	5040002.489 metri Nord

Studio Impatto Ambientale

3. SVILUPPO DEL PROGETTO

Le linee esistenti sono: zincatura alcalina statica e zincatura acida rotobarile, per un volume massimo di vasche attive autorizzato di 105 mc. I trattamenti di zincatura non utilizzano cianuri.

Il progetto prevede la diversificazione della tipologia produttiva per la zincatura statica e rotobarile.

Nell'impianto statico di zincatura alcalina sono state aggiunte, in parallelo alla linea presente, delle vasche vuote che la direzione Rodighiero ha intenzione di occupare con bagni di zinco acido e zinco nichel.

Nell'impianto a rotobarile invece sarà aggiunta una nuova linea parallela all'esistente sempre per diversificare la tipologia produttiva e poter produrre manufatti con bagni di zincatura acida e di zincatura alcalina.

Questo implica che non vi sarà un raddoppio di produzione, ma la stessa produzione della situazione attuale con prodotti di tipologia diversa. Il volume di vasche attive alla fine sarà di: 240 mc

Per quel che riguarda la realizzazione del progetto si fa presente che la struttura della linea di zincatura statica è già stata autorizzata, per cui gli interventi si riducono all'inserimento delle vasche, mentre la linea di zincatura rotobarile dovrà essere accessoriata di una nuova linea.

Studio Impatto Ambientale

3.1 CICLO TECNOLOGICO

Nella sua forma più generale il ciclo tecnologico è articolato in tre macro fasi:

- Preparazione o pretrattamento: composto di fasi di preparazione che non alterano la superficie, l'utilità della fase di preparazione o pretrattamento è finalizzata a rendere possibile il trattamento vero e proprio. In genere tali fasi sono: sgrassatura, decapaggio, attivazione/neutralizzazione.
- Trattamento: con questo si intende il trattamento principale, elettrolitico, teso ad alterare la superficie conferendo caratteristiche e funzionalità diverse. Il pezzo o la superficie trattate acquisiscono una nuova struttura superficiale ovvero subiscono un'alterazione che, nel caso in studio, è con apporto di materiale (deposizione od elettrodeposizione), in virtù di trattamenti elettrochimici.
- <u>Finitura o finissaggio</u>: ulteriore trattamento, che completa il ciclo produttivo ed altera ancora la superficie con trattamenti chimici (esempi: passivazione, fissaggio, sigillatura)

Ad ogni fase di pretrattamento, trattamento e finitura di una linea galvanica segue una fase di lavaggio, finalizzato a rimuovere dalla superficie del metallo da trattare i residui del bagno precedente ed effettuato mediante l'immersione dell'articolo in vasca di acqua corrente.

Linea Galvanica

I trattamenti superficiali di metalli utilizzano impianti che svolgono attività in sequenza, in linee di processo costituite da una serie vasche. Tutte le linee contengono più di un tipo di trattamento o attività, di solito con vasche di risciacquo intermedie.

La figura sottostante mostra un flusso di lavoro di processo semplificato di una tipica linea di processo.

Studio Impatto Ambientale

Figura 7: Linea di processo semplificata

Processi di deposizione elettrolitici

Un processo elettrolitico necessita di:

- una soluzione di elettroliti, cioè in grado di trasportare una corrente;
- almeno due conduttori di elettroni (elettrodi) e la capacità di formare un circuito;
- una corrente solitamente corrente continua, sebbene la tensione possa essere discontinua o inversa.

Il processo elettrolitico si configura come un circuito elettrico. Quando gli elettrodi (catodo e anodo) sono collegati a una sorgente di corrente continua, il catodo, si carica negativamente (-ve) mentre

l'anodo, diventa positivo (+ve).

Nell'elettrolita gli ioni positivi si sposteranno verso il catodo e gli ioni caricati negativamente verso l'anodo. Questa migrazione di ioni attraverso l'elettrolita costituisce la corrente elettrica in quella parte del circuito.

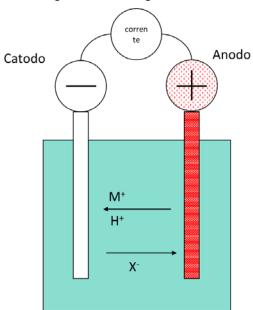


Figura 8: schema di cella elettrolitica

Studio Impatto Ambientale

Tipo di trasporto lungo la linea galvanica: statico e rotobarile

Il **trasporto statico** è eseguito agganciando i pezzi da trattare su appositi telai sospesi, che vengono spostati all'interno dell'impianto per effettuare il processo. In questo caso, sono proprio i telai stessi che fungono da conduttori per portare la corrente ai pezzi.

Il trattamento galvanico a telaio garantisce un risultato migliore, a fronte di un tempo maggiore per la preparazione dell'attrezzatura, e permette di trattare sia pezzi di grandi dimensioni che particolari piccoli, più delicati.

Nel trasporto a rotobarile (o roto), i componenti da trattare vengono caricati tutti insieme all'interno di un barile, che viene fatto ruotare sul suo asse. Il metallo si deposita grazie al passaggio di corrente attraverso i fori del rotobarile, che consentono anche il ricambio delle soluzioni.

Il processo di caricamento a rotobarile può avvenire sia manualmente che in maniera automatizzata e, in entrambi i casi, rende questo tipo di trattamento galvanico estremamente vantaggioso poiché non è necessaria la stessa mano d'opera che si utilizza nel trasporto statico per caricare i pezzi sul telaio uno ad uno. Di contro, a causa del rotolamento dei pezzi gli uni sugli altri per tutto il trattamento, non è consigliata per i pezzi particolarmente pesanti o con superficie esterna particolarmente delicata.

Aspetti ambientali

Di seguito una figura che illustra brevemente gli input e gli output di un processo di trattamento superficiale dei metalli:

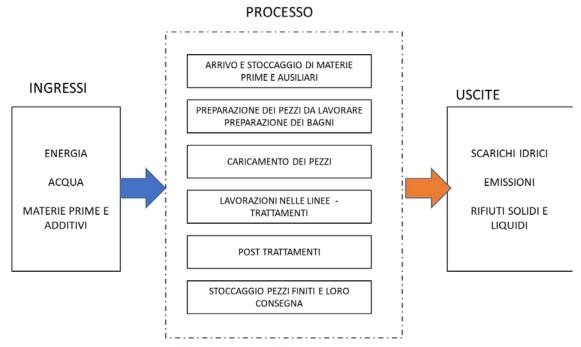


Figura 9: Input e Output processo galvanico

Protocollo p_vi/aooprovi GE/2025/0035126 del 30/07/2025 - Pag. 22 di 67

Quadro Progettuale

Studio Impatto Ambientale

Ogni linea galvanica consuma:

- materie prime,
- prodotti chimici,
- energia elettrica,
- acqua.

Ogni linea galvanica produce:

- acque di scarico;
- emissioni in atmosfera;
- produzione di rifiuti;

Di seguito sono presentate le lavorazioni di Zincatura, e le relative linee galvaniche, sottoforma di schema di flusso (Allegato A25), presenti nella situazione attuale.

Studio Impatto Ambientale

3.1.1 LINEE GALVANICHE DI ZINCATURA

Linea di Zincatura Statica

CARICO / SCARICO (posizioni da 1 a 4)

PRESGRASSATURA (posizioni 6,7)

RISCIACQUO (posizione 8)

DECAPAGGIO ACIDO (posizioni da 9 a 16)

RISCIACQUI (posizioni 17, 18)

SGRASSATURA ELETTROLITICA (posizioni 19, 20)

RISCIACQUO (posizione 21)

NEUTRALIZZAZIONE (posizione 22)

RISCIACQUO (posizione 23)

VASCHE VUOTE (posizione 24, 25, 26)

RISCIACQUO SU TRASLATORE (posizione 27)

ZINCO ALCALINO (posizioni da 28 a 35)

RISCIACQUO (posizione 36)

VASCHE VUOTE (posizioni da 37 a 46)

RISCIACQUO (posizione 47)

NEUTRALIZZAZIONE (posizione 48)

RISCIACQUO (posizione 49)

PASSIVAZIONI (posizioni 50, 52, 54)

RISCIACQUI (posizioni 51, 53)

ESSICCAZIONE (FORNI) (posizioni 55,56)

Linea di Zincatura rotobarile

CARICO/SCARICO (posizione 1)

VASCA VUOTA (posizione 2)

SGRASSATURA CHIMICA (posizioni da 8 a 11)

RISCIACQUI (posizioni 12, 13)

DECAPAGGIO (posizioni da 14 a 19)

RISCIACQUI (posizioni 20, 21)

SGRASSATURA ELETTROLITICA (posizioni 22, 23)

RISCIACQUO (posizione 24)

NEUTRALIZZAZIONE (posizione 25)

VASCHE VUOTE (posizioni da 26 a 30)

MANUTENZIONE (posizione 31)

RISCIACQUO (posizione 32)

ZINCO ACIDO (posizioni da 33 a 51)

RISCIACQUI (posizioni 52, 53)

PASSIVAZIONI (posizioni 4, 6 e7)

RISCIACQUI (posizioni 3, 5)

CENTRIFUGA RISCALDATA

Studio Impatto Ambientale

Zincatura alcalina (senza cianuro) linea statica

E' un trattamento elettrolitico effettuato in ambiente alcalino, per la presenza di componenti basici. Il punto di forza del bagno alcalino è la sua eccellente ripartizione degli spessori depositati attraverso una opportuna scelta delle correnti e ovviamente con pacchetti di additivi specifici.

La zincatura alcalina rappresenta la scelta migliore quando si vogliano ottenere le massime prestazioni di uniformità di spessore e tenuta alla corrosione.

Con la zincatura alcalina si possono trattare tutte le principali leghe ferrose.

Per questa linea il volume totale delle vasche attive risulta 78,7 m³, suddiviso in 63,7 m³ di trattamenti e 15 m³ di finitura.

Zincatura acida linea rotobarile

La zincatura acida è un tipo di zincatura elettrolitica che si svolge in un bagno acido con pH vicino a 5,2 particolarmente adatto per trattamenti estetici. Il processo di zincatura acida può infatti restituire risultati visivamente simili alla cromatura, con particolari dal colore estremamente brillante. Il prerequisito è che la superficie da trattare sia di buona qualità. Il trattamento di zincatura acida è più rapido e meno dispendioso di quello di zincatura alcalina e garantisce una produzione giornaliera più elevata. Il processo è molto versatile e permette di zincare praticamente tutti i metalli e le leghe ferrose, compresi i più difficili.

Per questa linea il volume totale delle vasche attive risulta 26 m³, suddiviso in 24,3 m³ di trattamenti e 2 m³ di finitura.

3.2.1 ATTIVITÀ TECNICAMENTE CONNESSE

Le attività tecnicamente connesse sono essenzialmente: laboratorio di analisi, manutenzione, centrali termiche e produzione di aria compressa.

Manutenzione: all'interno dell'installazione vi è uno spazio dedicato all'attività di manutenzione, dove gli addetti seguono la manutenzione interna di tutto lo stabilimento. In questo spazio si trovano utensili per affilare, tagliare e saldare.

Centrali termiche: nell'installazione insistono tre caldaie per il riscaldamento dei bagni (decapaggio dello statico) galvanici e la centrale termica per riscaldamento impianti e capannone.

Aria compressa: i processi produttivi sono dotati di circuiti di aria compressa a servizio di valvole pneumatiche.

Studio Impatto Ambientale

3.2 MATERIE PRIME, TECNICHE E SOTTOPRODOTTI

	Produttore e	TIP	FASE DI		Eventuali s	ostanze	pericolose contenut	e				Co	nsumo (I	kg)
DESCRIZIONE	scheda tecnica	0 (*)	UTILIZZO (**)	s. f.	CAS	EC	Denominazione sostanza	% in peso	frasi H	frasi P	classe pericolo	2022	2023	2024
DDEL IV 2420	MacDermid	MP	programma		68891-38-3		C12-14 alchil etere solfato di EO, sale di sdio	3-≤5%	H318 H315 H412	P280 P305 P351+P338	CORROSIVO		1.550	
PRELIK 3420	Enthone	IVIP	presgrassatura	L	85536-14-7	287-494-3	acido benzensolfonico, 4- C10-13-sec-alchilderivati	1-≤3%	H314 H318 H302	P310 P921 P962+P364 P322+P313	CORROSIVO	-	1.550	-
PRELIK 3420	COVENTYA	MP	presgrassatura	L	68891-38-3		C12-14 alchil etere solfato di EO, sale di sodio	3-≤5%	H318 H315 H412	P280 P305 P351+P338	CORROSIVO	1.250	_	1.100
FILLIN 3420	COVENTIA	IVIE	presgrassatura	_	85536-14-7	287-494-3	acido benzensolfonico, 4- C10-13-sec-alchilderivati	1-≤3%	H314 H318 H302	P310 P921 P962+P364 P322+P313	IRRITANTE	1.230	-	1.100
PRELIK 1700	COVENTYA	MP	presgrasstaura	L	1310-73-2	215-185-5	soda caustica	25-≤50%	H290 H314	P303+P361+P353 P305+P351+P338 P310 P321 P405 P501	CORROSIVO	18.200	19.600	15.400
					102-71-6	203-049-8	2,2',2"-nitrilotrietanolo	20-≤25%						
PRELIK ADDITIVE 19	COVENTYA S.r.l.	MP	Sgrassatura	L	1341-49-7	203-676-4	ammonio bifluoruro	10-≤20%	H301 H314 H315 H319	P303+P361+P353 P305-P351+P338 P310 P321 P405 P501	CORROSIVO IRRITANTE	1.200	1.550	1.100
SODIO GLUCONATO	B&C S.R.L.	MP	Sgrassatura ST	S	527-07-1	208-407-7	gluconato di sodio	³ 99%				-	-	50
SODA CAUSTICA PERLE	B&C S.R.L.	MP	Sgrassatura RT	S	1310-73-2	215-185-5	Soda Caustica perle		H290 H314	P260 P280 P301+P330+P331 P303+P361+P353 P304+P340 P305+P351+P338	CORROSIVO	250	ı	-
ACIDO CLORIDRICO 25 - 36 %	B&C SRL	MP	decapaggio - neutralizzazion e - bagno zinco acido rotobarile	L	7647-01-0	231-595-7	Acido cloridrico	25-50 %	H290 H314 H335	P260 P280 P234 P303+P361+P353 P305+P351+P338 P312 P501	CORROSIVO IRRITANTE	10.770	7.945	4.873
PICKLANE 31	COVENTYA SPA	MP	decapaggio	L	111-76-2	203-905-0	butilglicole	5-< 10 %	H302 H312 H332 H315 H 319	P273 P280 P305+P351+P338	CORROSIVO	4000	3.000	2.000
	SPA		cloridrco		166736-08-09		Polimero a base di: 2- propylheptanol	5-< 10 %	H318 H302	P310 P501				
					166736-08-09		Polimero a base di: 2- propylheptanol	1-< 3 %	H318 H302					

	Produttore e	TIP	FASE DI		Eventuali sostanze pericolose contenute								Consumo (kg)			
DESCRIZIONE	scheda tecnica	0 (*)	UTILIZZO (**)	s. f.	CAS	EC	Denominazione sostanza	% in peso	frasi H	frasi P	classe pericolo	2022	2023	2024		
					68213-23-0		Alcool grasso, etossilati	2,5-< 3 %	H318 H302 H412							
					26635-93-8	500-048-7	Oleylamine etossilato	0,3 -< 3 %	H301 H318 H400 H410							
ACIDO SOLFORICO	B&C SRL	MP	decapaggio solforico	L	7664-93-9	231-639-5	Sulfuric acid	> 15 % <100 %	H314	P260 P264 P280 P301+P330+P331 P305+P351+P338 P303+P361+P353 P304+P340 P310 P405 P501	CORROSIVO	28.769	25.709	26.545		
ACISOL66 - ACIDO SOLFORICO ³ 95 %	B&C Prodotti chimici S.r.I.	MP	decapaggio solforico	L	7664-93-9	231-639-5	ACIDO SOLFORICO	³ 95 %	H314 H315 H318 H319	P260 P280 P301+P330+P331 P303+P361+P353 P305+P351+P338 P310	CORROSIVO	25.970	16.854	20.878		
PICKLANE 68 L	COVENTYA SRL	MP	decapaggio solforico	L	1341-49-7	215-676-4	Ammonio bifluoruro	25-<50 %	H301 H314 H315 H319	P303+P361+P353 P305+P351+P338 P310 P321 P405 P501	CORROSIVO IRRITANTE	100	-	200		
ACIDO NITRICO 53 - 67 %	B&C SRL	MP	neutralizzazion e nitrica	L	7697-37-2	231-714-2	Acido Nitrico	≤ 67 %	H272 H290 H314	P234 P210 P220 P221 P260 P264 P280 P301+P330+P331 P305+P351+P338 P303+P361+P353 P360 P304+P340 P310 P390 P404 P406	CORROSIVO IRRITANTE			2.850		
ACINIT36 - Acido Nitrico 36°Bè (53%)	B&C SRL	MP	neutralizzazion e nitrica / passivazione	L	7697-37-2	231-714-2	Acido Nitrico	53%	H272 H290 H331 H314 H318 EUH071	P234 P260 P264 P271 P280 P301+P330+P331 P303+P361+P353 P304+P340 P305+P351+P338 P310 P363 P390 P403+P233 P501	TOSSICO CORROSIVO	250	-	-		
Acido Nitrico 42°Bè (>65%)	B&C SRL	MP	neutralizzazion e nitrica / passivazione	L	7697-37-2	231-714-2	Acido Nitrico	65%	H272 H290 H331 H314 H318 EUH071	P210 P220 P234 P260 P264 P271 P280 P301+P330+P331 P303+P361+P353 P304+P340 P305+P351+P338 P310 P363 P390 P403+P233 P501	COMBURENTE TOSSICO CORROSIVO	2.775	2.550	-		
PRIMION 240 BASE	COVENTYA SPA	MP	bagno zinco alcalino statico	L			polyquaternium-2	5-<10 %	H400 H410	P273 P391 P501	PERICOLOSO PER L'AMBIENTE	-	-	-		

	Produttore e	TIP	FASE DI		Eventuali s	sostanze	pericolose contenut	e				Co	nsumo (l	kg)
DESCRIZIONE	scheda tecnica	0 (*)	UTILIZZO (**)	s. f.	CAS	EC	Denominazione sostanza	% in peso	frasi H	frasi P	classe pericolo	2022	2023	2024
							polyquaternium-2	5-<10 %	H400 H410					
PRIMION 240 REPLENISHER	COVENTYA SPA	MP	bagno zinco alcalino statico	L	62-56-6	200-543-5	tiourea	1-<2,5%	H351 H361d H411 H302	P273 P280 P308+P313 P391 P405 P501	PERICOLOSO PER LA SALUTE PERICOLOSO PER	15000	7000	8000
					68133-60-8		1-benzil-piridinio-3- carbossilato	1-<3%	H312 H315 H319		L'AMBIENTE			
					1310-73-2	215-185-5	Soda caustica	5-<10 %	H314	P260				
PRIMION PURIFIER 1	COVENTYA SPA	MP	bagno zinco alcalino statico	L	62-56-6	200-543-5	tiourea	3-≤5%	H351 H361d H411 H302	P303+P361+P353 P305+P351+P338 P310 P405 P501	PERICOLOSO PER LA SALUTE CORROSIVO	2000	2000	2000
PRIMION PURIFIER 2	COVENTYA SPA	MP	bagno zinco alcalino statico	L	1344-09-8	215-687-4	acido silicico, sale di sodio	25-≤50 %	H315 H319	P264 P280 P305+P351+P338 P321 P332+P313 P337+P313	IRRITANTE	1.200	-	1000
IDROSSIDO DI SODIO (SODA CAUSTICA IN SOLUZIONE 25 - 50%)	B&C SRL	MP	bagno zinco alcalino statico	L	1310-73-2	215-185-5	idrossido di sodio	50% + 0.5 %	H314 H290	P260 P280 P303+P361+P353 P305+P351+P338 P310	CORROSIVO	51.384	78.472	78.533
ZINCO METALLICO	Gerli Metalli Spa	MP	bagno zinco alcalino statico bagno zinco acido rotobarile	S	7440-66-6	231-175-3	Zinc (metal)	98-100 %				36.600	34.000	34.000
ACIDO BORICO	B&C Prodotti Chimici Srl	MP	bagno zinco acido rotobarile - bagno zinco acido rotobarile	S	10043-35-3	233-139-2	Acido Borico	100	H360FD	P201 P280 P308+P313	PERICOLOSO PER LA SALUTE	400	300	350
POTASSIO CLORURO	A.M.P.E.R.E. ITALIA SRL	MP	bagno zinco acido rotobarile	S	7447-40-7	231-211-8	Cloruro di Potassio	>98%				3.000	2.000	2.000
	COVENTYA				28348-53-0	248-983-7	sodio cumensolfonato	50- ≤100%	H319	P261 P280	0000000000			
ZETANIUM 250 BRIGHTENER	SPA	MP	bagno zinco acido rotobarile	L	122-57-6	204-555-1	benzilidene acetone	3-≤5%	H317	P305+P351+P338	CORROSIVO IRRITANTE	2000	2000	2.000
	J. 7.		asido rotobamo		89-98-5	201-956-3	ortoclorobenzaldeide	3-<5%	H314	P310 P321 P501				
ZETAPLUS 460 BF ADDITIVE	COVENTYA SPA	MP	bagno zinco acido rotobarile	L	64-19-7	200-580-7	acido acetico glaciale 99,5 - 100%	3-≤5%	H226 H314			2.000	2.000	1.000
					28348-53-0	208-983-7	sodio cumensolfonato	5-<10%	H319					
ZETAPLUS 460	COVENTYA		hagno zinco		532-32-1	208-534-8	sodio benzoato	3-≤5%	H319	P261 P280	CORROSIVO			
BF BASE	SPA	MP a	bagno zinco acido rotobarile	L	109909-39-9		Alchilfenolo etossi solfato	3-≤5%	H318	P305+P351+P338 P310 P321 P501	IRRITANTE	2.000	2.000	2.000
					111-48-8	203-874-3	tiodiglicol	3-≤5%	H319					

	Produttore e	TIP	FASE DI		Eventuali s	sostanze	pericolose contenut	e				Co	nsumo (l	kg)
DESCRIZIONE	scheda tecnica	0 (*)	UTILIZZO (**)	s. f.	CAS	EC	Denominazione sostanza	% in peso	frasi H	frasi P	classe pericolo	2022	2023	2024
					172890-52-7		Alchilfenolo poliglicoletere solfatato	1-≤3%	H317					
Zinco Cloruro	B&C SRL	MP	bagno zinco acido rotobarile	S	7646-85-7	231-592-0	Zinco cloruro	94 - 100 %	H302 H314 H318 H335 H400 H410	P305+P351+P338 P303+P361+P353 P321 P304+P340 P501 P260 P301+P330+P331 P280 P310 P270 P403+P233 P264 P273 P391 P363 P271 P405	CORROSIVO IRRITANTE PERICOLOSO PER L'AMBIENTE	400	350	450
					13548-38-4	236-921-1	Cromo nitrato	10-≤20 %	H272 H411 H332 H315 H317					
					7631-99-4	231-554-3	Sodio nitrato	5-≤10 %	H272 H319					
FINIDIP 124	COVENTYA	MP	passivazione		7681-49-4	231-667-8	Sodio fluoruro	1-≤3 %	H301 H315 H319	P260 P303+P361+P353		3750	2.500	1.250
FINIDIP 124	SPA	MP	bianca	L	10141-05-6	233-402-1	Cobalto nitrato	1-≤2,5 %	H334 H341 H350i H360F H400 H410 H302 H317	P305+P351+P338 P310 P405 P501	PERICOLOSO PER L'AMBIENTE	3750	2.500	1.250
					7697-37-2	231-714-2	Acido Nitrico	1-≤3 %	H272 H314					
FINIDIP ADD 19	COVENTYA SPA	MP	passivazione bianca	L	1341-49-7	215-676-4	Ammonio bifluoruro	10-≤20 %	H301 H314 H315 H319	P303+P361+P353 P305+P351+P338 P310 P321 P405 P501	CORROSIVO IRRITANTE	225	200	200
					7631-99-4	231-554-3	Sodio nitrato	10-≤20 %	H272 H319		CORROSIVO			
LANTHANE YELLOW 335 PART A	COVENTYA SPA	MP	passivazione gialla	L	13548-38-4	236-921-1	Cromo nitrato	5-≤10 %	H272 H411 H332 H315 H319 H317	P260 P303+P361+P353 P305+P351+P338 P310 P405 P501	PERICOLOSO PER LA SALUTE PERICOLOSO PER L'AMBIENTE	-	-	100

	Produttore e	TIP	FASE DI			sostanze	pericolose contenut	e contenute						Consumo (kg)			
DESCRIZIONE	scheda tecnica	0 (*)	UTILIZZO (**)	s. f.	CAS	EC	Denominazione sostanza	% in peso	frasi H	frasi P	classe pericolo	2022	2023	2024			
					10141-05-6	233-402-1	Cobalto nitrato	3-≤5 %	H334 H341 H350i H360F H400 H410 H302 H317								
					7681-49-4	231-667-8	Sodio fluoruro	3-≤5 %	H301 H315 H319								
					7697-37-2	231-714-2	Acido Nitrico	1-≤3 %	H272 H314								
LANTHANE YELLOW 334 PART B	COVENTYA SPA	MP	passivazione gialla	L	7783-00-8	231-974-7	Acido selenioso	1-≤2,5 %	H301 H331 H373 H400 H410	P260 P303+P361+P353 P305+P351+P338 P310 P405 P501	CORROSIVO	100	-	100			
					10101-53-8	233-253-2	Cromo solfato	10-≤20 %	H314 H302 H312 H332								
					7631-99-4	231-554-3	Sodio nitrato	10-≤20 %	H272 H319								
LANTHANE TR 175 PART A	COVENTYA SPA	MP	passivazione tr 175	L	10141-05-6	233-402-1	Cobalto nitrato	3-≤5 %	H334 H341 H350i H360F H400 H410 H302 H317	P260 P303+P361+P353 P305+P351+P338 P310 P405 P501	CORROSIVO PERICOLOSO PER LA SALUTE PERICOLOSO PER L'AMBIENTE	1.000	1.000	1.000			
					7697-37-2	231-714-2	Acido Nitrico	1-≤3 %	H272 H314								
					7664-93-9	231-639-5	Acido solforico 96%	1-≤3 %	H314								
LANTHANE TR 175 PART B	COVENTYA SPA	MP	passivazione tr 175	L								1.100	1.100	1.100			
			-		10101-53-8	233-253-2	Cromo solfato	10-≤20 %	H314 H302 H312 H332		CORROSIVO						
LANTHANE TR 175 PART C	COVENTYA SPA	MP	passivazione tr 175	L	10141-05-6	233-402-1	Cobalto nitrato	1-≤2,5 %	H334 P260 H341 P303+P361+P353 H350i P305+P351+P338 H360F P310 P405 P501 H4400 H410 H302 H317		PERICOLOSO PER LA SALUTE PERICOLOSO PER L'AMBIENTE	1.000	1.000	1.000			

Protocollo p_vi/aooprovi GE/2025/0035126 del 30/07/2025 - Pag. 30 di 67

Quadro Progettuale

Studio Impatto Ambientale

	Produttore e	TIP			Eventuali s	ostanze	pericolose contenut	е				Consumo (kg)			
DESCRIZIONE	scheda tecnica			s. f.	CAS	EC	Denominazione sostanza	% in peso	frasi H	frasi P	classe pericolo	2022	2023	2024	
					7664-93-9	231-639-5	Acido solforico 96%	1-≤3 %	H314						
ENVIROZIN 240 BRIGHTNER	COVENTYA SPA	MP	bagno zinco alcalino statico		68133-60-8		1-benzil-piridinio-3- carbossilato	3-≤5%	H302 H315 H319			2.000	4.000	2.000	

DEPURAZIONE

	Produttore e	TIPO			Eventuali \$	Sostanze peric	olose contenute					С	ONSUMI (kg	g)
DESCRIZIONE	scheda tecnica	(*)	Fasi di utilizzo	SF	CAS Number	EC Number	Denominazione sostanza	% in peso	frasi H	Frasi P	Classe di pericolo	2022	2023	2024
ACIDO SOLFAMMICO	B&C SRL	MA	DEPURAZIONE	L	5329-14-6	226-218-8	Acido solfammico	>78 <= 100 %	H315 H319 H412	P273 P280 P302+P352 P305+P351+P338 P332+P313 P337+P313 P362	CORROSIVO PERICOLOSO PER LA SALUTE PERICOLOSO PER L'AMBIENTE	1200	1200	1.200
ACIDO SOLFORICO 30/32° Bè	B&C Prodotti Chimici SRL	MA	DEPURAZIONE	L	7664-93-9	231-639-5	Acido solforico	36%	H314 H318 H315 H319	P260 P280 P301+P330+P331 P303+P361+P353 P305+P351+P338 P310	CORROSIVO			
ACTICARBONE FISICO MINERALE IN POLVERE	CECA ARKEMA GROUP	MA	DEPURAZIONE	SP	7440-44-0	231-153-3	Carbonio	> 80 %				8500	8500	8.500
CLORURO FERRICO SOL.	B&C SRL	MA	DEPURAZIONE	L	7705-08-0	231-729-4	tricloruro ferrico	10-≤25 %	H290 H314 H302	P210 P280 P305+P351+P338 P310 P301+P312	CORROSIVO IRRITANTE			
40%					7758-94-3	231-843-4	dicloruro di ferro	< 2,5 %	H290 H314	P302+P352 P405 P406 P501				
DONAUFLOC A213	B&C SRL	MA	DEPURAZIONE	S										100
SODIO IPOCLORITO 14-18%	B&C SRL	MA	DEPURAZIONE	L	7681-52-9	231-668-3	Sodio ipoclorito	14-18%	H314 H400	P273 P280 P301+P330+P331 P303+P361+P353 P304+P340 P305+P351+P338 P310 P363 P391 P405	CORROSIVO PERICOLOSO PER L'AMBIENTE	2.412	7.153	11.875

Studio Impatto Ambientale

3.3 MAGAZZINI - STOCCAGGI

Le materie prime utilizzate nel processo produttivo sono stoccate prevalentemente su scaffalature disposte all'interno del capannone. Solitamente le materie prime con stato fisico solido polverulento sono confezionate in sacchi, mentre quelle con stato fisico liquido sono confezionate in cisternette / taniche / fustini. Le scaffalature dove poggiano i liquidi sono dotate di bacini di contenimento.

In tabella sono indicate tutte le aree dove si effettua lo stoccaggio dei prodotti. La tabella sottostante è mutuata dalla scheda B.13 della documentazione AIA ed è riferita alla planimetria B22:

N°	Nome identificativo area	Caratteristiche (Pavimentazione, copertura, recinzione, ecc.)	Materiale stoccato	Modalità di stoccaggio
1	MP 1	Pavimentata coperta	Materie prime polverulente in sacchi	In sacchi su scaffalatura
2	MP2	Pavimentata coperta	Materie prime polverulente in sacchi	In sacchi su scaffalatura
3	MP3	Pavimentata coperta	Materie prime polverulente in sacchi	In sacchi su scaffalatura
4	MP4	Pavimentata coperta	Materie prime polverulente in sacchi	In sacchi su scaffalatura
5	MP5	Pavimentata coperta	Materie prime polverulente in sacchi	In sacchi su scaffalatura
6	A-MP	Pavimentata coperta	Materie prime polverulente in sacchi a servizio della depurazione	In sacchi su scaffalatura
7	MP L1	Pavimentata coperta	Materie prime liquide alcaline	In cisternette di polietilene su scaffalatura
8	MP L2	Pavimentata coperta	Materie prime liquide alcaline	In cisternette di polietilene su scaffalatura
9	MP L3	Pavimentata coperta	Materie prime liquide acide	In cisternette di polietilene, taniche, fustini su scaffalatura
10	MP L4	Pavimentata coperta	Materie prime liquide acide	In cisternette di polietilene, taniche, fustini su scaffalatura
11	MP L5	Pavimentata coperta	Materie prime liquide	In cisternette di polietilene, taniche, fustini su scaffalatura a servizio impianto roto
12	MP L6	Pavimentata coperta	Materie prime liquide	In cisternette di polietilene, taniche, fustini su scaffalatura a servizio impianto roto
13	MP L7	Pavimentata coperta	Materie prime liquide	In cisternette di polietilene, taniche, fustini su scaffalatura a servizio impianto statico
14	MP L8	Pavimentata coperta	Materie prime liquide	In cisternette di polietilene, taniche, fustini su scaffalatura a servizio impianto statico
15	MP L9	Pavimentata coperta	Oli	Fusti di olio su bacino di contenimento
16	MP L10	Pavimentata coperta	Oli	Cisternetta di olio su bacino di contenimento
17	A-1	Pavimentata coperta	Cisternette vuote a rendere	Su pavimentazione, sotto capannone

Tabella 2: Stoccaggio materiali

Studio Impatto Ambientale

La tabella sottostante riporta i serbatoi presenti, è mutuata dalla scheda B.13.1 della documentazione AIA ed è riferita alla planimetria B22. Tutti i serbatoi sono in area depurazione, quelli che non hanno la vasca di contenimento rimandano eventuali sversamenti direttamente a V1 tramite caditoie specifiche posizionate nelle vicinanze.

Sigla	Posizione	Capacità (m³)	Destinazione d'uso	Doppio fondo di		
	amministrativa		(sostanza contenuta)	contenimento		
S1	Α	10	Reflui acidi	SI		
S2	Α	2	Acido solforico	SI		
S3	Α	1	Acido solfammico			
S4	Α	1	Carbone			
S5	Α	1	Polielettrolita			
S6	Α	2	Soda caustica	SI		
S7	Α	0,2	Ipoclorito di sodio	SI		
S8	Α	0,1	Anticalcare	SI		
S10	Α	10	Fondi vasche			
S11	Α	10	Acqua da trattare			

Tabella 3: Serbatoi presenti

All'interno dell'installazione non vi sono serbatoi interrati in uso.

Studio Impatto Ambientale

4. SISTEMI DI CONTENIMENTO DEGLI INQUINANTI

4.1 EMISSIONI IN ATMOSFERA

4.1.1 EMISSIONI IN ATMOSFERA CONVOGLIATE

La tabella seguente illustra le emissioni convogliate in atmosfera e i ricambi d'aria dell'installazione, in riferimento alla planimetria in allegato B20.

NUMERO CAMINO	PROVENIENZA	ALTEZZA CAMINO da p.c. (m)	AREA DELLA SEZIONE (m²)	PORTATA AUTORIZZATA (Nm³/h)	ABBATTIMENTO / TIPO DI ABBATTITORE	OBBLIGO ANALISI
2	Zincatura alcalina con impianto statico	8	0,385	11.000	NO	SI

Tabella 4: Emissioni convogliate da linee

Nel dettaglio le aspirazioni convogliate al camino 2 e gli inquinanti monitorati.

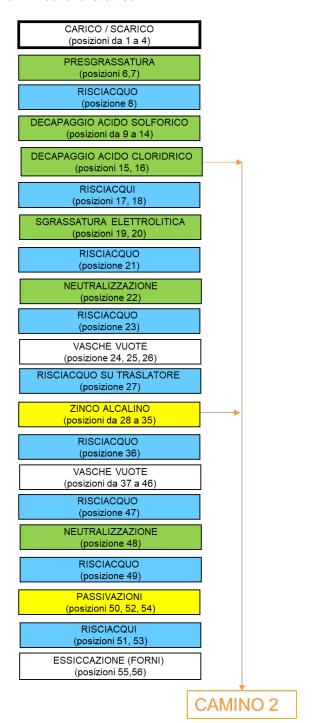

N.C.	LINEA	LAVORAZIONE / TIPO DI BAGNO	NUMERO POSIZIONI	Impianto abbattimento	PORTATA (Nm³/h)	Inquinanti
	Zincatura alcalina statica	Zincatura alcalina	Da 28 a 35 comprese / 4 vasche			Polveri Acido solforico Acido cloridrico Acido fluoridrico
2		Decapaggio (acido cloridrico)	Posizioni 15 e 16 / 1 vasca	-	11.000	Acido nitrico Ammoniaca Cromo III + VI Zinco

Tabella 5: Emissioni da linee galvaniche

Studio Impatto Ambientale

Di seguito un estratto dello schema a blocchi (Allegato A25) con emissioni come da autorizzazione.

Linea di zincatura statica

Linea di zincatura rotobarile

CARICO/SCARICO (posizione 1) VASCA VUOTA (posizione 2) SGRASSATURA CHIMICA (posizioni da 8 a 11) RISCIACQUI (posizioni 12, 13) **DECAPAGGIO** (posizioni da 14 a 19) **RISCIACQUI** (posizioni 20, 21) SGRASSATURA ELETTROLITICA (posizioni 22, 23) RISCIACQUO (posizione 24) **NEUTRALIZZAZIONE** (posizione 25) VASCHE VUOTE (posizioni da 26 a 30) MANUTENZIONE (posizione 31) **RISCIACQUO** (posizione 32) ZINCO ACIDO (posizioni da 33 a 51 RISCIACQUI (posizioni 52, 53) PASSIVAZIONI (posizioni 4, 6 e7) **RISCIACQUI** (posizioni 3, 5) CENTRIFUGA RISCALDATA

Studio Impatto Ambientale

CONTROLLI

Camino n.2 – Portata autorizzata 11.000 Nm³/h

Provenienza: posizioni di zincatura alcalina e decapaggio acido.

Nella tabella sottostante si riportano i risultati dei campionamenti degli anni 2022, 2023 e 2024.

Inquinante			R.d	R.d.P. 22EC13833		R.d.P. 23EC13792		R.d.P. 24LA26196			
			Data di ricevimento 28/10/2022		Data di ricevimento 13/10/2023		Data di ricevimento 17/12/2024				
	mg/Nm ³	g/h	Nm³/h	mg/Nm ³	g/h	Nm³/h	mg/Nm³	g/h	Nm³/h	mg/Nm³	g/h
Polveri	-	-		<0,6	<7,081		<0,7	<7,09		0,65	8,19
Acido solforico	5	50		0,8	8,774		1,9	19,829	10.455	0,18	2,28
Composti del cloro come acido cloridrico	5	50		2,0	21,308		0,5	6,009		0,31	3,90
Composti del fluoro come acido fluoridrico	5	50	10.905	<0,06 9	<0,752	10.455	<0,69	<7,21		<0,02	<0,20
Acido nitrico	5	50	10.505	<0,3	<3,76	10.400	<0,3	<3,605		1,24	15,70
Ammoniaca				2,8	30,7		<1,7	<18		0,164	2,027
Cromo III	5	25		<0,00 5	<0,05		<0,005	<0,05		0,002	0.019
Cromo VI				<0,00 1	<0,014		<0,001	<0,014		<0,0002	<0,003
Zinco	5	25		0,0071	0,078		0,0098	0,102		0,015	0,183

Tabella 6: Analisi emissioni 2021, 2022 e 2023, dove con Nm³/h si esprime la Portata Misurata, con mg/Nm³ la concentrazione rilevata e con g/h il flusso di massa.

I flussi di massa degli anni 2022, 2023 e 2024 sono riportati nei rapporti di prova citati ed allegati in Allegato B26.

Nota Camino 1: nel giugno del 2022 è stata comunicata la dismissione del trattamento di nichelatura appartenente alla linea di zincatura rotobarile. Il trattamento era stato sospeso nel settembre 2021. Le vasche dedicate a questo trattamento erano aspirate e convogliate al Camino n. 1.

Impianti termici

A servizio delle linee galvaniche, l'installazione è dotata di alcune caldaie (C1, C2 e C3) e da una centrale termica (CT1). Di seguito l'elenco dei generatori di calore:

Numero Camino	Impianto	A SERVIZIO DI	POTENZA (kW)
C1	Caldaia a metano	Impianto statico	35
C2 Caldaia a metano		Impianto statico	35
C3	Caldaia a metano	Impianto statico	35
CT1 Centrale termica a metano (impianto termico misto)		Riscaldamento / mantenimento temperatura dei bagni e riscaldamento locali acqua servizi	384

Tabella 7: generatori di calore

Studio Impatto Ambientale

4.1.2 EMISSIONI IN ATMOSFERA DIFFUSE

Per contenere le emissioni diffuse l'installazione è dotata di torrini, posti sul tetto, come indicato in planimetria B20.

NUMERO TORRINO	PROVENIENZA	ABBATTIMENTO / TIPO DI ABBATTITORE	OBBLIGO ANALISI
Torrino grande	Estrazione aria	NO	NO
Torrino 1	Estrazione aria	NO	NO
Torrino 2	Estrazione aria	NO	NO
Torrino 3	Estrazione aria	NO	NO
Torrino 4	Estrazione aria	NO	NO
Torrino 5	Estrazione aria	NO	NO
1	Estrazione aria	NO	NO

Tabella 8: Torrini per estrazione d'aria

Studio Impatto Ambientale

4.2 GESTIONE ACQUE

L'azienda gestisce le seguenti tipologie di acque:

- Acque industriali;
- Acque meteoriche;
- Acque per servizi assimilati agli urbani.

Gli approvvigionamenti di acqua derivano da:

- Falda, tramite un pozzo, con concessione riportata in allegato A18.
- Acquedotto per utilizzo in depurazione e servizi igienici (bagni e docce).

L'azienda è titolare dei seguenti scarichi:

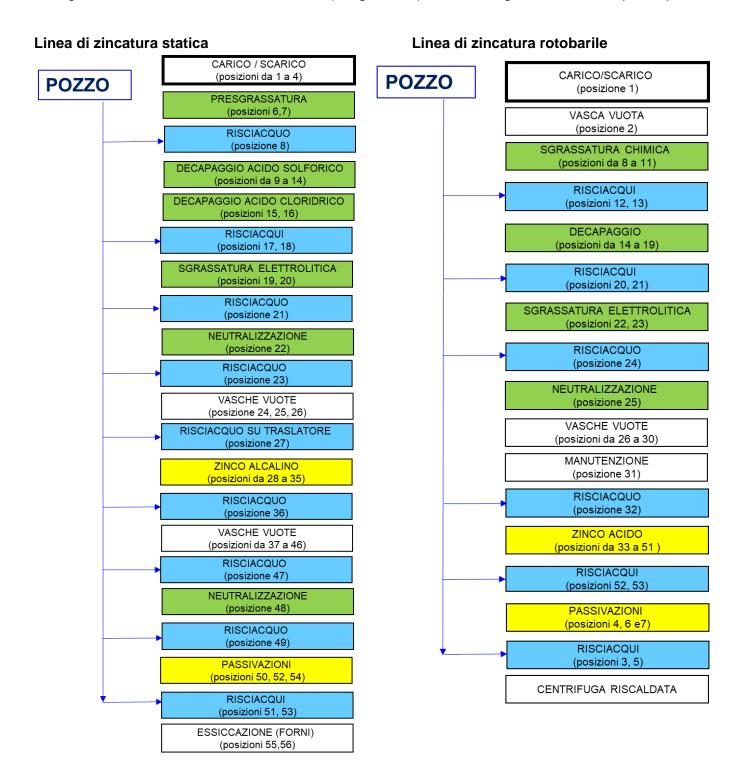
- **SF1, scarico produttivo,** recapitante, previa depurazione, nella rete fognaria civile gestita dalla Società Acque del Chiampo S.p.A.
- SF2, scarico acqua meteorica di dilavamento tetti e piazzali, che convoglia nella linea acque bianche gestita dalla Società Acque del Chiampo S.p.A., recapitante nel corso d'acqua denominato roggia Signoletto. Lo scarico SF2 è situato all'esterno della proprietà.

Al depuratore sono convogliati i reflui provenienti dalle linee di lavorazione, le acque meteoriche di dilavamento dei piazzali delle aree limitrofe all'impianto (area con tematismo diagonale rosso in planimetria B21), le acque di lavaggio/bagnatura pavimenti.

In linea generale le acque, prelevate da pozzo, sono utilizzate preliminarmente per la linea dei raffreddamenti e poi inviate ai lavaggi nelle linee galvaniche. Le acque in uscita dai lavaggi sono convogliate al depuratore, per poi uscire in un unico refluo, scarico SF1.

L'approvvigionamento di acque da acquedotto è funzionale agli utilizzi assimilati agli urbani, quali i servizi igienici. I relativi scarichi convogliano in fognatura, tramite il punto di scarico SF1. Per completezza la tabella sottostante riporta i consumi di acque di acquedotto:

Approvvigionamento	U.d.M.	2022	2023	2024
acquedotto	m ³	4.472	7.252	5.981


Tabella 9: consumi acqua di acquedotto

Studio Impatto Ambientale

4.2.1. ACQUE INDUSTRIALI

Per illustrare compiutamente la gestione delle acque industriali, nella situazione attuale, si fa riferimento alle planimetrie negli allegati B19 – B21.

Di seguito un estratto dello schema a blocchi (Allegato A25) con indicati gli utilizzi delle acque da pozzo.

Studio Impatto Ambientale

Prelievo

Le acque sono prelevate da un pozzo e nella tabella sottostante si indicano i consumi di acqua di falda per usi industriali.

Approvvigionamento	U.d.M.	2022	2023	2024
Pozzo PER USI IND	m ³	30.482	29.555	26.698

Tabella 10: consumi idrici

Di seguito gli schemi di derivazione dei reflui dai lavaggi delle linee.

Linea di zincatura statica Linea di zincatura rotobarile CARICO / SCARICO CARICO/SCARICO (posizioni da 1 a 4) (posizione 1) **PRESGRASSATURA** VASCA VUOTA (posizioni 6,7) (posizione 2) RISCIACQUO SGRASSATURA CHIMICA (posizione 8) (posizioni da 8 a 11) DECAPAGGIO ACIDO SOLFORICO RISCIACQUI (posizioni da 9 a 14) (posizioni 12, 13) DECAPAGGIO ACIDO (posizioni 15, 16) **DECAPAGGIO** (posizioni da 14 a 19) RISCIACQUI (posizioni 17, 18) RISCIACQUI (posizioni 20, 21) SGRASSATURA ELETTROLITICA (posizioni 19, 20) SGRASSATURA ELETTROLITICA (posizioni 22, 23) **RISCIACQUO** (posizione 21) RISCIACQUO NEUTRALIZZAZIONE (posizione 24) (posizione 22) NEUTRALIZZAZIONE **RISCIACQUO** (posizione 25) (posizione 23) VASCHE VUOTE VASCHE VUOTE (posizioni da 26 a 30) (posizione 24, 25, 26) MANUTENZIONE RISCIACQUO SU TRASLATORE (posizione 31) (posizione 27) **RISCIACQUO** ZINCO ALCALINO (posizione 32) (posizioni da 28 a 35) ZINCO ACIDO RISCIACQUO (posizioni da 33 a 51 (posizione 36) VASCHE VUOTE RISCIACQUI (posizioni 52, 53) (posizioni da 37 a 46) RISCIACQUO **PASSIVAZIONI** (posizione 47) (posizioni 4, 6 e7) NEUTRALIZZAZIONE RISCIACQUI (posizione 48) (posizioni 3, 5) RISCIACQUO CENTRIFUGA RISCALDATA (posizione 49) **PASSIVAZIONI** (posizioni 50, 52, 54) RISCIACQUI **DEPURATORE** (posizioni 51, 53) ESSICCAZIONE (FORNI) (posizioni 55,56) **DEPURATORE**

Studio Impatto Ambientale

4.2.2. DEPURAZIONE

Come già indicato, al depuratore sono convogliate:

- 1. i reflui provenienti dalle linee di lavorazione;
- 2. le acque meteoriche di dilavamento dell'area limitrofa all'impianto di depurazione, indicata attraverso un tematismo a righe diagonali rosse in planimetria B21;
- eventuali sversamenti che possono verificarsi all'interno del capannone, comprese le acque di lavaggio di quella porzione di pavimento. Tali sversamenti sono intercettati da un sistema di griglie che li convoglia in una "vasca di raccolta";
- 4. acqua della lavapavimenti.

In base a quanto dichiarato dall'azienda il depuratore è stato progettato per una portata massima di 10 m³/h e lavora con una portata media di 8 m³/h. Si riporta un estratto dell'allegato A25, che illustra le fasi di depurazione.

IMPIANTO CHIMICO FISICO

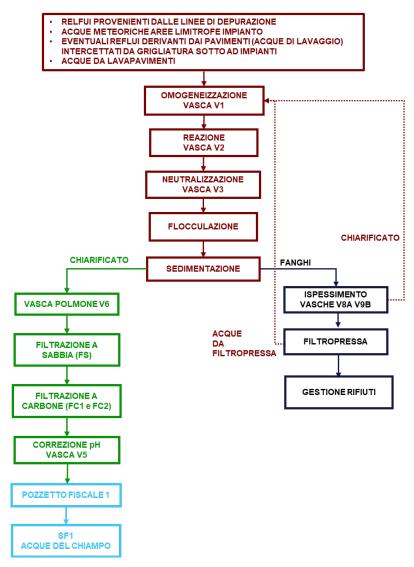


Figura 10: Schema fasi di depurazione

Studio Impatto Ambientale

Di seguito le varie fasi di depurazione con riferimento all'impiantistica in dotazione.

In planimetria B21 è riportata l'impiantistica visibile ad una determinata sezione.

Omogeneizzazione:

I reflui da trattare convergono ad una vasca accessoriata (V1) con le seguenti utenze: N° 1 elettroagitatore; N° 2 elettropompe di alimentazione (MP1/MP2).

Linea di dosaggio reflui acidi (risciacqui passivazioni) costituita dal serbatoio in polietilene S1 e relativa pompa dosatrice di tipo pneumatico a "membrana".

Dal serbatoio S1 si può andare per troppo pieno in V1, altrimenti viene dosato nella vasca V2.

Reazione

Stazione di trattamento chimico fisico costituito dalle seguenti sezioni di trattamento:

- Vasca di reazione (V2), realizzata in polipropilene, di forma cilindrica a sviluppo verticale, accessoriata con elettroagitatore e elettrodo pHmetro dove vengono dosati i seguenti prodotti chimici:
 - a. il carbone in forma liquida per abbattimento di saponi e olii contenuto in serbatoio S4 (non visibile in planimetria B21 in quanto sotto alle vasche V2 e V3);
 - b. l'acido solforico 32Be per correzione pH a 3,5 / 4,5 contenuto in serbatoio S2;
 - c. l'acido solfammico per abbattere i nitriti contenuto in serbatoio S3 (non visibile in planimetria B21 in quanto sotto alle vasche V2 e V3);

Neutralizzazione

A fianco è posta, della stessa dimensione della precedente, una vasca di neutralizzazione (V3) corredata di agitatore e pHmetro dove viene immessa la soda caustica (serbatoio S6) per la correzione del pH a 10,5 /10,8.

Il polielettrolita viene dosato, per la successiva fase di flocculazione, direttamente nel tubo di collettamento fra la vasca V3 e i decantatori. La miscelazione del polielettrolita stesso avviene attraverso la turbolenza del refluo, che scorre all'interno del tubo.

Flocculazione

Il refluo è convogliato a due decantatori, visibili in planimetria B21, di tipo lamellare (la superficie proiettata di ciascuna vasca di decantazione è di 40 m²).

Ogni decantatore è dotato di una pompa per l'estrazione del fango che viene inviato ai rispettivi ispessitori (V8A, V9B).

Studio Impatto Ambientale

Filtrazione acque depurate:

Il chiarificato in uscita dalle vasche di decantazione viene raccolto nella vasca V6, dove viene dosato l'anticalcare (stoccato in S8) con pompa temporizzata, per alimentare le tre colonne in vetroresina che contengono 1 filtro a sabbia (FS) e 2 filtri a carbone (FC1 e FC2). Una pompa dedicata consente i controlavaggi in automatico ai letti filtranti. I controlavaggi vanno in V1.

Dati tecnici filtri

- 1 filtro a sabbia composto da:
- -750Kg di quarzite selezionata mm 3.00-5.00
- -350Kg di quarzite selezionata mm 1.00-3.00
- -1100Kg di antracite selezionata mm 0.80-2.00
- 2 filtri a carboni attivi:
- -1500Kg di carbone attivo granulare 12x40 mesh

Correzione pH

L'acqua in uscita dalle colonne viene inviata ad una vasca (V5) dotata di agitatore e pHmetro per la regolazione del pH finale mediante acido solforico. Attualmente, questa sezione prevede il dosaggio di lpoclorito mediante lettura diretta del Cloro libero presente nell'acqua. L'ipoclorito di Sodio è stoccato nel contenitore S7.

Infine, per caduta scende nella vasca V7 e si avvia allo scarico in fognatura.

Scarico SF1

In uscita, fronte strada, è presente una vasca ove opera un prelevatore automatico sigillato gestito da Acque del Chiampo.

Fanghi (ispessimento e filtropressa)

Il fango viene prelevato, attraverso una pompa a pistone, dai due ispessitori (V8A, V9B) e avviato alla filtropressa.

La Filtropressa è a funzionamento semiautomatico Mod. 60x60 con 40 piastre inserite.

E' stato realizzato un soppalco per posizionamento della filtropressa in elevazione, completo di scaletta d'accesso con corrimano, ballatoio di servizio con parapetti di sicurezza e piani di camminamento in grigliato antisdrucciolo.

Il fango una volta disidratato viene scaricato nel cassone posto sotto la filtropressa. L'acqua è rimandata in testa impianto (V1).

Manutenzioni vasche di lavaggio linee galvaniche

Studio Impatto Ambientale

Le vasche dei lavaggi delle linee galvaniche sono sottoposte a manutenzione settimanale. Attraverso una pompa che aspira da fondo lavaggi (mandate in linea), i fondi delle vasche sono inviati ad un serbatoio (S10 vicino a ispessitori) e poi vanno a filtropressa

Polmone di stoccaggio

L'impianto prevede un polmone di stoccaggio acque da trattare, utilizzato sporadicamente. Questo polmone è costituito da:

Vasca V4 - Ex decantatore al momento riposizionato a filo fabbricato ed utilizzato come eventuale vasca di stoccaggio di acque da trattare

Serbatoio S11 - Serbatoio per eventuale stoccaggio di acqua da trattare. Come per V4 non è collegato direttamente all'impianto e viene utilizzato saltuariamente

Prodotti Chimici Per La Depurazione

La linea di prodotti usati per la depurazione è composta da tre vasche per la dissoluzione dei prodotti in polvere: carbone, acido solfammico e polielettrolita e da tre cisternette per i prodotti liquidi: acido solforico 30%, soda caustica 30%, ipoclorito di sodio.

Tutti i serbatoi sono dotati di agitatori ove necessario e da pompette dosatrici gestite da centralina

Dati dimensionali

Vasche

V1 – dimensioni cm 320 x 950 x 400 H – citata in relazione

V2 - dimensioni cm 160 Ø x 220 H

V3 - dimensioni cm 160 Ø x 220 H

V4 - dimensioni cm 300 Ø x 570 H

V5 – dimensioni cm 120 Ø x 150 H

V6 - dimensioni cm 170 Ø x 170 H

V7 – dimensioni cm 170 Ø x 170 H

V8A - dimensioni cm 230 Ø x 530 H

V9B – dimensioni cm 230 Ø x 530 H

Serbatoi:

S1 - dimensioni cm 230 Ø x 300 H

S2 - dimensioni cm 120 Ø x 180 H

S3 - dimensioni cm 95 Ø x 120 H

S4 - dimensioni cm 95 Ø x 120 H

S5 - dimensioni cm 95 Ø x 120 H

Studio Impatto Ambientale

S6 - dimensioni cm 120 Ø x 180 H

S10 - dimensioni cm 205 Ø x 370 H

S11 - dimensioni cm 205 Ø x 370 H

Contenitori più piccoli:

S7 - dimensioni cm 60 Ø x 73 H

S8 - dimensioni cm 60 Ø x 73 H

Di seguito si riportano i rapporti di prova e i risultati delle analisi allo scarico industriale SF1

Analisi acque scarico finale

Anno	2022	2022	2022 2023		2024	2024
	1° sem	2°sem	1° sem	2°sem	1° sem	2°sem
Rapporto di prova	A2205738-	A2209791-	A2305515-	A2309798-	24LA13052	24EC18419
	001	001	002	001		
Data del rapporto di prova	29/06/2022	23/11/2022	02/08/2023	16/01/2024	12/07/2024	13/01/2025

Tabella 11: Rapporti di prova ultimi tre anni

In allegato B27 sono riportati i due rapporti di prova relativi al 2024.

Studio Impatto Ambientale

Parametri	U.d.M.	limiti	2022			023	2024		
			1° s	2°s	1° s	2°s	1° s	2°s	
Solidi sospesi totali	mg/l	200	30	< 10	<10	< 10	<8	< 10	
Richiesta chimica di ossigeno (COD)	mg/l O2	500	< 50	209	< 50	< 50	40	35	
рН	-	5,5 - 9,5	7,7	8,1	8,5	8,7	8,4	8,1	
Conducibilità elettrica specifica a 25°C	μS/cm	-	1940	2040	1820	2501	2124	2000	
Boro (B)	mg/l	4	1,2	2	0,95	1,59	0,414	0,87	
Cromo totale (Cr)	mg/l	4	< 0,031	< 0,031	< 0,031	0,048	0,00367	0,0056	
Nichel (Ni)	mg/l	4	< 0,05	< 0,05	< 0,05	< 0,05	0,00148	0,0012	
Zinco (Zn)	mg/l	1	< 0,22	0,31	0,33	0,41	0,176	0,11	
Cloruri	mg/l	1200	< 100	< 100	104	< 100	100	100	
Fluoruro	mg/l	12	2,2	3,5	3,25	3,3	3,2	3,1	
Azoto nitrico	mg/l	30	7,7	6,7	8	< 5	5,1	14	
Solfati	mg/l	1000	363	531	487	310	580	580	
Azoto nitroso	mg/l	0,6	0,29	1,1	0,59	0,12	0,16	0,36	
Cianuri totali	mg/l	1	< 0,02	< 0,02	< 0,02	< 0,02	< 0,10	< 0,05	
Azoto ammoniacale (come NH4)	mg/l	30	< 5	< 5	< 5	< 5	2,3	2,0	
Benzene	mg/l		< 0,02	< 0,02	< 0,02	< 0,02	< 0,0001	< 0,01	
Etilbenzene	mg/l		< 0,02	< 0,02	< 0,02	< 0,02	< 0,0001	< 0,01	
o-Xilene	mg/l		< 0,02	< 0,02	< 0,02	< 0,02	< 0,0001	< 0,01	
(m+p)-Xilene	mg/l		< 0,04	< 0,04	< 0,04	< 0,04	< 0,0001	< 0,01	
Stirene	mg/l		< 0,02	< 0,02	< 0,02	< 0,02	< 0,0001	< 0,01	
Toluene	mg/l		< 0,02	< 0,02	< 0,02	< 0,02	< 0,0001	< 0,01	
Sommatoria solventi organici aromatici	mg/l	4	< 0,04	< 0,04	< 0,04	< 0,04	< 0,0001	< 0,01	
Aldeidi	mg/l	2	< 0,1	< 1	< 0,1	-	-	0,33	
Idrocarburi totali	mg/l	10	< 0,1	< 0,1	< 0,1	< 0,1	< 0,035	< 1	
Tensioattivi cationici	mg/l		< 0,2	< 0,2	< 0,2	< 0,2	< 0,035	< 0,2	
Tensioattivi non ionici	mg/l		< 0,3	< 0,3	< 0,3	0,77	< 0,035		
Tensioattivi anionici	mg/l		< 0,3	< 0,3	< 0,3	0,54	< 0,035	0,38	
Tensioattivi totali (anionici, cationici, non ionici - da calcolo)	mg/l	4	< 0,3	< 0,3	< 0,3	1,3	< 0,035	1,5	
PFOA (Perfluoro-n-octanoic acid)	ng/l		18	23	17	17	< 0,050	< 10	
PFOS (PerfluoroOctansulfonic Acid)	ng/l		2	< 2	< 2	< 2	< 0,010	< 10	
PFBA (PerfluoroButyric Acid)	ng/l		< 10	12	34	< 10	< 0,050	30	
PFBS (PerfluoroButansulfonic Acid)	ng/l	500	< 10	< 10	< 10	< 10	< 0,050	13	
PFPeA (PerfluoroPentanoic Acid)	ng/l		< 10	< 10	< 10	< 10	< 0,050	13	
PFHxA (Perfluoro-n-hexanoic acid)	ng/l		< 10	< 10	< 10	< 10	< 0,050	< 10	
PFHxS (PerfluoroHexansulfonic Acid)	ng/l		< 10	< 10	< 10	< 10	< 0,050	< 10	
PFHpA (PerfluoroHeptanoic ACID)	ng/l		< 10	< 10	< 10	< 10	< 0,050	< 10	
PFNA (PerfluoroNonanoic Acid)	ng/l		< 10	< 10	< 10	< 10	< 0,050	< 10	
PFDA (PerfluoroDecanoic Acid)	ng/l		< 10	< 10	< 10	< 10	< 0,050	< 10	
PFUnA (PerfluoroUndecanoic Acid)	ng/l		< 10	< 10	< 10	< 10	< 0,050	< 10	
PFDoA (PerfluoroDodecanoic Acid)	ng/l		< 10	< 10	< 10	< 10	< 0,050	< 10	
HFPO-DA (Gen X)	ng/l		< 10	< 10	< 10	< 10	< 0,10	10	
P5MeODIOXOAc (C6O4)	ng/l		< 10	< 10	< 10	< 10	< 0,11		
Somma di altri PFAS (8 composti) PFPeA, PFNA, PFDeA, PFHxA, PFHpA, PFHxS, PFDoA, PFUnA	ng/l		< 10	< 10	< 10	< 10	< 0,050	< 10	
Somma PFAS (10 composti)	ng/l		< 10	12	34	< 10	< 0,050	0,12	

Tabella 12: risultati analisi SF1 ultimi tre anni

Studio Impatto Ambientale

4.2.3. ACQUE METEORICHE

Prima di descrivere la gestione delle acque meteoriche, si inserisce la tabella sottostante dove sono specificate le superfici di pertinenza della Zincatura Rodighiero S.r.I.

Tipo di superficie		Area (m²)
Copertura stabilimento		3.337,4
Area esterna pavimenta	ta	2.286,7
Area esterna non pavim	entata (a verde)	182,8
Coefficiente di corrivazio	one superficie impermeabile	0,9
Coefficiente di corrivazio	one superficie permeabile (verde)	0,4
di cui	Impermeabile	5290,4
ar cur	verde	73,1
Per un totale di		5363,5

Tabella 13: Tipo di superficie

La rete di raccolta e convogliamento delle acque meteoriche è illustrata in planimetria in allegato B21, dove sono visibili le linee percorse dalle acque meteoriche e il loro sistema di gestione.

Le acque meteoriche di dilavamento dei tetti e dei piazzali vengono scaricate dal punto denominato SF2, situato all'esterno della proprietà, dove viene effettuato il campionamento di controllo, nella linea acque bianche gestita dalla Società Acque del Chiampo S.p.A., recapitante nel corso d'acqua denominato Roggia Signoletto. All'interno della proprietà la stessa Società Acque del Chiampo S.p.A., ha realizzato un punto di prelievo con sonde pH, conducibilità, e redox, con centralina che permette la lettura in remoto. Per le acque meteoriche di dilavamento non è presente alcun pretrattamento.

Studio Impatto Ambientale

Di seguito si riportano i rapporti di prova e i risultati delle analisi allo scarico acque meteoriche, SF2.

Data del rapporto di prova 21/10/2022 24/11/2023 1/10/2024 1/10/2022 1/10/2022 1/10/2023 1/10/2024 1/10/2024 1/10/2024 1/10/2024 1/10/2024 1/10/2024 1/10/2024 1/10/2024 1/10/2024 1/10/2024 1/10/2024 1/10/2024 1/10/2025 1/10/20		Rapporto	di prova	A2208312- 001	23EC06689	24LA13335
Darametri	Data	del rapporto	di prova		24/11/2023	1//07/2024
SST	_	1				
SST	pH	-	5,5÷9,5	7,7	7,2	7,9
SST	Cond. elett	μS/cm	-	74,0		
Idrocarburi totali	SST	•	80	< 10	<10	20
Idrocarburi totali	C.O.D.	mg/l O2	180	< 50	<20	13
Tensioattivi cationici (MBAS)	Idrocarburi totali	T T	5	< 0,1	<1	0,035
Tensioattivi cationici (MBAS)	Aldeidi alifatiche		1	·	0.08	·
Tensioattivi anionici (MBAS)		l ŭ		,	·	
Tensioattivi Bi.A.S. mg/l 2 < 0,2 < 0,20 Tensioattivi totali mg/l 2 2 < 0,5	` ,	mg/l		,		· · · · · · · · · · · · · · · · · · ·
Tensioattivi totali						
Azoto ammoniacale (come NH4+)			2			
Azoto nitroso (come N)						
Cianuri totali mg/l 0,5 0,02 < 0,05 < 0,10 Azoto nitrico mg/l 20 < 5					· ·	1
Azoto nitrico mg/l 20 <5 0,72 0,92	\ /		,	·	·	·
Cloruri						· · · · · · · · · · · · · · · · · · ·
Fluoruri						-
Solfati						<u> </u>
Boro mg/l 2					•	•
Cromo tot mg/l 2 < 0,03 0,004 0,00282 Nichel mg/l 2 < 0,05						·
Nichel						<u> </u>
Zinco						
Solventi organici aromatici mg/l 0,2 < 0,04 < 0,01 < 0,0002 PFBA (acido perfluorobutanoico) ng/l < 10						•
PFBA (acido perfluorobutanoico) ng/l < 10			,	,	·	
PFPeA (acido perfluoropentanoico) ng/l < 10 < 0,050 PFBS (acido perfluorobutansolfonico) ng/l 500 < 10	Convenie organier dromatier	1g/.		1 0,0 1	10,01	10,00021
PFPeA (acido perfluoropentanoico) ng/l < 10 < 0,050 PFBS (acido perfluorobutansolfonico) ng/l 500 < 10	PFBA (acido perfluorobutanoico)	ng/l		< 10	< 10	< 0.050
PFBS (acido perfluorobutansolfonico) ng/l 500 < 10 < 0,050 PFDS (Perfluoro-1-decanesulfonate) ng/l < 0,050	, , ,	1 -				· · · · · · · · · · · · · · · · · · ·
PFDS (Perfluoro-1-decanesulfonate) ng/l	, , , , , ,	1 -	500			
PFTA (acido Perfluoro-n-tetradecanoico) PFODA (acido perfluoro-n-pentanoico) PFDA (acido perfluoro-n-decanoico) PFHxDA (acido perfluoro-n-esadecanoico) PFHxDA (acido perfluoro-n-esadecanoico) PFHxA (acido perfluoroesanoico) PFHxA (acido perfluoroeptanoico) PFNA (acido perfluorononanoico) PFNA (acido perfluorononanoico) PFDA (acido perfluorodecanoico) PFTA (acido perfluorotetradecanoico) PFTA (acido perfluorotetradecanoico) PFTA (acido perfluorotetradecanoico) PFTA (acido perfluorotetranoico) PFOA (acido perfluorotetranoico)	, ,	1 -		1.0	1.5	•
PFODA (acido perfluoro-n-pentanoico) PFDA (acido perfluoro-n-decanoico) PFHxDA (acido perfluoro-n-esadecanoico) PFHxDA (acido perfluoroesanoico) PFHxA (acido perfluoroesanoico) PFHxA (acido perfluoroeptanoico) PFNA (acido perfluorononanoico) PFNA (acido perfluorodecanoico) PFDeA (acido perfluorodecanoico) PFDeA (acido perfluoroundecanoico) PFDOA (acido perfluorodecanoico) PFDOA (acido perfluorododecanoico) PFDA (acido perfluorodecansolfonico) PFDA (acido perfluorodecansolfonico) PFTPA (acido perfluorotetradecanoico) PFTPA (acido perfluorotetradecanoico) PFTA (acido perfluorotetradecanoico) PFTA (acido perfluorotetradecanoico) PFOA (acido perfluorotetranoico) PFOA (acido perfluorotetnoico) PFOA (acido perfluorotanoico) PFOA (acido perfluorotanoico) PFOA (acido perfluorotanoico)						1 0,000
PFDA (acido perfluoro-n-decanoico)ng/l< 10< 0,050PFHxDA (acido perfluoro-n-esadecanoico)ng/l< 10	,					
PFHxDA (acido perfluoro-n-esadecanoico)ng/l< 10< 10< 0,050PFHxA (acido perfluoroeptanoico)ng/l< 10				< 10		< 0.050
PFHxA (acido perfluoroesanoico)ng/l< 10< 0,050PFHpA (acido perfluoroeptanoico)ng/l< 10	. ,	1 -		,		10,000
PFHpA (acido perfluoroeptanoico)ng/l< 10< 10PFNA (acido perfluorononanoico)ng/l< 10				< 10	< 10	< 0.050
PFNA (acido perfluorononanoico)ng/l< 10< 0,050PFDeA (acido perfluorodecanoico)ng/l< 10						, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
PFDeA (acido perfluorodecanoico)ng/l< 10PFUnA (acido perfluoroundecanoico)ng/l< 10						< 0.050
PFUnA (acido perfluoroundecanoico)ng/l< 10< 0,050PFDoA (acido perfluorododecanoico)ng/l< 10	, ,			1.0		1 0,000
PFDoA (acido perfluorododecanoico)ng/l< 10< 0,050PFHxS (acido perfluorododecanoico)ng/l< 10		T		< 10		< 0.050
PFHxS (acido perfluorododecanoico) ng/l < 10	, ,					
PFDeA (acido perfluorodecansolfonico) ng/l < 10						1 5,000
PFTeA (acido perfluorotetradecanoico) PFTrA (acido perfluotridecanoico) PFOA (acido perfluorottanoico) ng/l <10 <10 <10 <10 <0,050	,			- 10		
PFTrA (acido perfluotridecanoico) ng/l < 10 PFOA (acido perfluoroottanoico) ng/l < 10 < 0,050	, ,					
PFOA (acido perfluoroottanoico) ng/l < 10 < 10 < 0,050	, ,					
				< 10		< 0.050
	, , ,			` ''		
PFOS (acido perfluoroottansolfonico) ng/l <5 < 0,010						
PFOS (somma di isomeri lineari e ramificati) ng/l < 10 < 5 < 0,050	,			< 10		
Somma di PFOA, PFOS e rispettivi derivati ng/l <10		T		` 10		\ 0,000
Somma PFOS+PFOA ng/l < 0,050		T			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	< 0.050

Protocollo p_vi/aooprovi GE/2025/0035126 del 30/07/2025 - Pag. 48 di 67

Quadro Progettuale

Studio Impatto Ambientale

	A2208312- 001	23EC06689	24LA13335		
Data	del rapporto	di prova	21/10/2022	24/11/2023	1//07/2024
parametri	U.d.M.	limiti			
Somma di altri PFAS (8 composti) PFPeA,	ng/l		< 10		< 0,050
PFNA,PFDeA, PFHxA,PFHpA, PFHxS,PFDoA, PFUnA					
Somma PFAS (10 composti)	ng/l		< 10		< 0,050
cc604/s sale ammonico	ng/l			< 40	< 0,11
GenX (HFPO dimero)	ng/l			< 10	
4,2-FTS	ng/l			< 10	< 0,10
6,2-FTS	ng/l			< 10	< 0,10
8,2-FTS	ng/l			< 10	< 0,10
acido 4-8-diossa-3H-perfiuorononanoìco (ADONA)	ng/l			< 10	< 0,050

Tabella 14: risultati rapporti di prova 2022, 2023 e 2024

Studio Impatto Ambientale

4.3 GESTIONE RIFIUTI

In riferimento alla planimetria B22, i rifiuti prodotti dall'attività sono stoccati, in depisto temporaneo preliminare alla raccolta, come descritto in tabella:

N°	Nome identifica tivo area	Capacità di stoccaggio (m³)	Superficie (m²)	Caratteristiche dell'area di stoccaggio rifiuti	EER	Descrizione	Fasi di provenienza
1	R1	21	7	Scaffale su area pavimentata coperta	15 01 10*	imballaggi contenenti residui di sostanze pericolose o contaminati da tali sostanze	Da consumo sostanze / attività di disimballo
				·	15 01 01	imballaggi di carta e cartone	
				Cisternette su vasca dotata di bacino di	11 01 11*	soluzioni acquose di lavaggio, contenenti sostanze pericolose	Da linee di zincatura
2	VR1	18	9	contenimento e area	06 01 02*	Acido cloridrico	Da linee di zincatura
				pavimentata coperta	11 01 05*	acidi di decapaggio	Da linee di zincatura
				_	11 01 13*	rifiuti di sgrassaggio contenenti sostanze pericolose	Da linee di zincatura
3	A-R1	16	16	Cisternette / bancali / fusti su area pavimentata coperta	prodotti con		Da attività industriali / di manutenzione estemporanee
5	R- B1	1	1	Saccone – big bag su area pavimentata coperta	15 01 10*	imballaggi contenenti residui di sostanze pericolose o contaminati da tali sostanze	Da consumo sostanze
6	R-B2	1	1	Saccone – big bag su area pavimentata coperta	15 02 02*	materiali filtranti e stracci, indumenti protettivi contaminati da sostanze pericolose	Da normale attività industriale
7	CONTAINER EER 11 01 09	30	15	area pavimentata	11 01 09*	fanghi e residui di filtrazione contenenti sostanze pericolose	filtropressatura
8	CONTAINER EER 15 01 02	30	15	area pavimentata	15 01 02	imballaggi di plastica	attività di disimballo
9	CONTAINER EER 15 01 03	30	15	area pavimentata	15 01 03	imballaggi in legno	attività di disimballo

Tabella 15: tabella che indica i rifiuti prodotti dall'attività di galvanica e la zona di stoccaggio

La modalità di avvio a smaltimento/recupero segue il criterio quantitativo.

La tabella successiva indica i quantitativi di tutti i rifiuti prodotti negli ultimi tre anni, desunti dai report AIA.

0==	CER Descrizione Stato fisico Frasi HP		Stato Facilia		Quantità annua (kg/anno)			Stoccaggio		
CER			2022	2023	2024	N°	Modalità			
06 01 02*	Acido cloridrico	L	HP8				2	cisternette		
			HP14							
11 01 05*	acidi di decapaggio	L	HP14	15.400	13.760	17.000	2	cisternette		
11 01 09*	fanghi e residui di filtrazione, contenenti sostanze pericolose	F	HP14	80.460	59.680	105.020	7	container		
11 01 11*	soluzioni acquose di lavaggio, contenenti sostanze pericolose	L	HP8 HP14		50.860		2	cisternette		
11 01 98*	altri rifiuti contenenti sostanze pericolose	SNP	HP14		1.840		3	Sacconi/ bancali		
15 01 10*	imballaggi contenenti residui di sostanze pericolose o contaminati da tali sostanze	SNP	HP4 HP6 HP14		580		1/5	bancali		
15 02 02*	assorbenti, materiali filtranti (inclusi i filtri dell'olio non specificati altrimenti), stracci e indumenti protettivi,	SNP	HP10		1.600	2.100	6	Saccone / big bag		
	contaminati da sostanze pericolose		HP14							
17 02 04*	vetro, plastica e legno contenenti sostanze pericolose o da esse contaminati	SNP	HP14	3.220	1.280		3	saccone		

Tabella 16: rifiuti prodotti, quantitativi ultimi tre anni e modalità di stoccaggio

Studio Impatto Ambientale

4.4 ELEMENTI DI IMPATTO SITUAZIONE ATTUALE

Gli elementi di impatto ambientale riferiti alla situazione attuale sono di seguito elencati:

Elementi di Impatto Ambientale	Descrizione Attuale
Emissioni in Atmosfera	Le emissioni in atmosfera da una galvanica non costituiscono una pressione
	ambientale di rilievo. I controlli analitici hanno visto il rispetto dei limiti alle
	emissioni.
Emungimento acque	L'attività è titolare di una concessione derivazione d'acqua.
Scarichi industriali acque	Lo scarico industriale è depurato attraverso una sezione di depurazione che tratta
	un massimo di 10 m³/h, per un funzionamento in orario di lavoro.
	L'installazione è dotata di dispositivi atti a evitare fuoriuscite incontrollate di flussi
	inquinanti. I controlli analitici hanno visto il rispetto dei limiti agli scarichi.
Gestione acque di pioggia	Le acque di prima pioggia (tetti e piazzali) sono convogliate, attraverso lo scarico
	SF2, nella rete acque bianche, gestita da Acque del Chiampo, e successivamente
	in roggia Signoletto.
	I controlli analitici hanno visto il rispetto dei limiti agli scarichi.
Gestione Rifiuti	La gestione rifiuti si avvale del deposito temporaneo preliminare alla raccolta. Le
	zone di deposito rifiuti sono prevalentemente all'interno, i rifiuti posti all'esterno
	sono su container coperti.
Suolo	La superficie dell'intera installazione è pavimentata.
Emissioni acustiche	I controlli effettuati ai sensi dell'AIA del 2010 hanno visto il rispetto dei limiti.

Tabella 17: Elementi di Impatto Ambientale ATTUALE

Studio Impatto Ambientale

5. PROGETTO - MODIFICHE E INTERVENTI

Il Progetto prevede l'implementazione delle due linee esistenti all'interno di capannone chiuso, interno alla Zona Industriale di Montecchio Maggiore.

Il capannone non subirà alcuna modifica strutturale e non avverrà nessuna copertura di area permeabile. Le due linee esistenti si configurano in zincatura statica alcalina e zincatura rotobarile acida.

Per la linea di zincatura statica alcalina è già stato richiesto ed ottenuto l'ampliamento strutturale della linea stessa (modifica non sostanziale per il futuro inserimento di nuove vasche vuote).

Il progetto prevede la diversificazione della tipologia produttiva per la zincatura statica e rotobarile.

Nell'impianto statico di zincatura alcalina sono state aggiunte, in parallelo alla linea presente, delle vasche vuote che la direzione Rodighiero ha intenzione di occupare con bagni di zinco alcalino e zinco nichel.

Nell'impianto a rotobarile, invece, sarà aggiunta una nuova linea, di zincatura alcalina e di zinco nichel alcalino, parallela all'esistente, di zincatura acida, sempre per diversificare la tipologia produttiva.

Questo implica che non vi sarà un raddoppio di produzione, ma la stessa produzione della situazione attuale con prodotti di tipologia diversa: se attualmente si produce una barra all'ora o un carico di minuteria metallica (rotobarile) in zincatura basica, in futuro si avrà sempre una barra all'ora un carico di minuteria metallica (rotobarile) in zincatura o basica o acida.

Per quel che riguarda gli impatti ambientali futuri, si precisa che:

- 1. Le lavorazioni saranno alternative l'una all'altra, non si prevede quindi un aumento consistente dei consumi di materie prime e acqua;
- 2. Come visibile dall'Allegato C_ dove è inserito il "Dimensionamento portate aspirazione comparto galvanica" a firma dell'ing. Chinellato Davide e dalla planimetria C9 verranno attivati due camini nuovi denominati 1 e 3 a cui verranno asserviti due torri di abbattimento / scrubber. Tali camini saranno in funzione in modalità alternative in base alle esigenze produttive;
- 3. L'implementazione delle nuove linee non comporterà un aumento dei consumi di acqua (le linee lavoreranno in parallelo) e quindi di scarico. Inoltre, lo scarico industriale e lo scarico delle acque meteoriche è gestito da Acque del Chiampo S.p.A.

Il volume di vasche attive alla fine sarà di: 240 mc

Studio Impatto Ambientale

Di seguito un estratto dell'allegato C7.

Linea futura di zincatura statica

CARICO / SCARICO (posizioni da 1 a 5) PRESGRASSATURA (posizioni 42, 43) RISCIACQUO (posizione 44) DECAPAGGIO ACIDO SOLFORICO (posizioni da 45 a 50) DECAPAGGIO ACIDO CLORIDRICO (posizioni da 51 a 52) RISCIACQUI (posizioni 53, 54) SGRASSATURA ELETTROLITICA (posizioni 55, 56) RISCIACQUO (posizione 57) NEUTRALIZZAZIONE (posizione 58) RISCIACQUO (posizione 59) ZINCO ACIDO (posizioni 60, 61) RISCIACQUO (posizione 62) RISCIACQUO SU TRASLATORE (posizione 27-63) ZINCO ALCALINO (posizioni 25, 26) ZINCO ALCALINO (posizioni da 29 a 36) RISCIACQUO (posizione 28) ZINCO NICHEL ALCALINO (posizioni da 20 a 24) RISCIACQUO (posizione 19) NITRICA (posizione 18) RISCIACQUO (posizione 17) PASSIVAZIONI (posizioni 9, 11, 13, 14, 16)

Linea futura di zincatura rotobarile

CARICO/SCARICO (posizione 1)

SGRASSATURA CHIMICA (posizioni da 8 a 13)

> RISCIACQUI (posizioni 14, 15)

DECAPAGGIO (posizioni da 16 a 24)

RISCIACQUI (posizioni 25, 26)

SGRASSATURA ELETTROLITICA (posizioni 27, 28)

> RISCIACQUO (posizione 29, 30)

CARRELLO (posizione 31)

RISCIACQUO/TRASLATORE (posizione 32)

ZINCO ACIDO (posizioni da 33 a 5

RISCIACQUO (posizione 52)

> RISCIACQUI TRASLATORE (posizioni 53, 54)

ZINCO ALCALINA (posizioni da 55 a 66

RISCIACQUO (posizione 67)

ZINCO NICHEL ALCALINO (posizioni da 68 a 73)

RISCIACQUO (posizione 74)

> PASSIVAZIONI (posizioni 2, 4, 6, 7, 75, 77)

RISCIACQUI (posizioni 3, 5, 76, 78)

RISCIACQUO/TRASLATORE (posizione 79)

CENTRIFUGA RISCALDATA

RISCIACQUI

(posizioni 10, 12, 15, 17) ESSICCAZIONE (FORNI) (posizioni 7, 8)

Studio Impatto Ambientale

Le fasi produttive evidenziate con il tratteggio sono alternative e combinate diversamente fra loro a seconda delle richieste dei clienti.

Il progetto è illustrato nelle seguenti planimetrie allegate:

Allegato C8, planimetria che illustra le modifiche di approvvigionamento acque;

Allegato C9, planimetria che illustrano le nuove emissioni dei camini;

Allegato C10, planimetria che illustra le modifiche nella rete degli scarichi;

Di seguito si riporta un estratto della B20 e della C9 per illustrare brevemente la situazione attuale e futura delle linee:

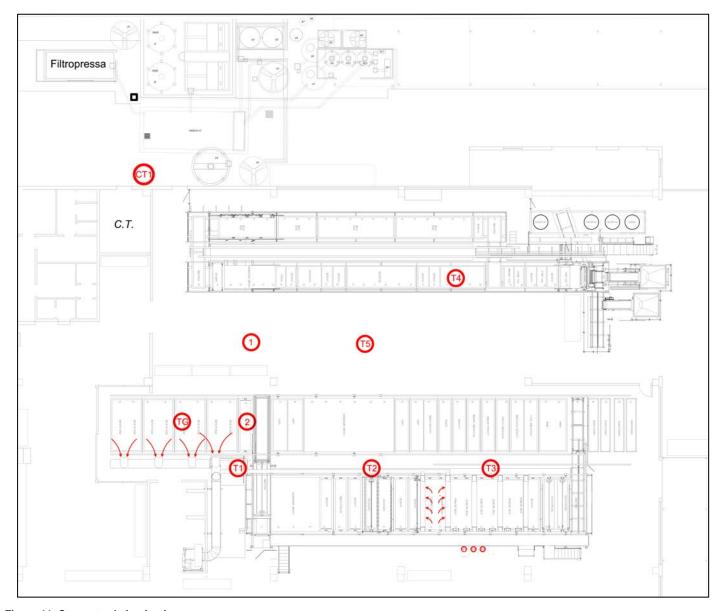
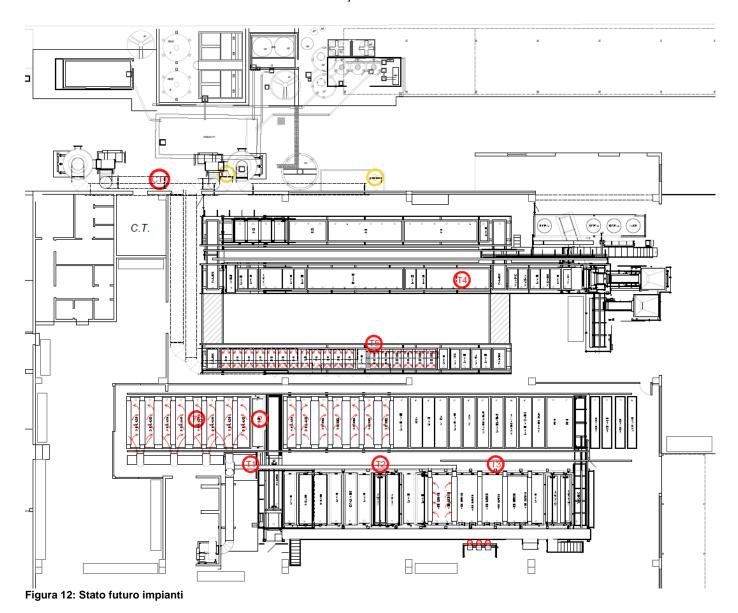



Figura 11: Stato attuale impianti

Studio Impatto Ambientale

Studio Impatto Ambientale

5.1 VARIAZIONI

La seguente tabella illustra le variazioni attese sui temi ambientali:

Aspetti ambientali	Descrizione variazioni
Tipologia e consumo di materie prime	Il Progetto prevede la attivazione di lavorazioni con bagni di Zinco Nichel. Di seguito una tabella che illustra le materie prime utilizzate e una stima del loro consumo futuro.
	La tipologia di lavorazione galvanica, a parte i bagni di Zinco Nichel, è sostanzialmente identica a quella attuale, in quanto si avranno due linee, una statica e una roto di zincatura sia acida che basica.
	Le materie prime necessarie a tali lavorazioni sono sostanzialmente quelle riportate nel paragrafo dove si illustrano le materie prime e i relativi consumi negli ultimi tre anni.
	Il loro consumo aumenterà di un 10-20 %
Consumo di risorse idriche	Il nuovo progetto prevede delle lavorazioni in parallelo, rispetto all'attuale e non in serie. Pertanto, si stima che il consumo di acqua non aumenterà in maniera significativa.
Consumo di energia	Il nuovo progetto prevede delle lavorazioni in parallelo, rispetto all'attuale e non in serie. Pertanto, si stima che il consumo di energia non aumenterà in maniera significativa.
Combustibili utilizzati	Il nuovo progetto prevede delle lavorazioni in parallelo, rispetto all'attuale e non in serie. Pertanto, si stima che il consumo di combustibili non aumenterà in maniera significativa.
Fonti di emissioni in atmosfera di tipo convogliato	Si prevede di attivare due nuove emissioni in atmosfera, oltre al già presente camino 2, nello specifico i camini 1 e 3, dotati di scrubber, afferenti alle due nuove linee galvaniche.
Emissioni in atmosfera di tipo convogliato	Vedere paragrafo sotto dedicato.
Fonti di emissioni in atmosfera di tipo non convogliato	Non vi sono variazioni
Scarichi idrici	Come per i consumi di risorse idriche anche gli scarichi non subiscono variazioni con il nuovo Progetto. Il nuovo progetto prevede delle lavorazioni in parallelo, rispetto all'attuale e non in serie. Si conferma quindi una portata massima di scarico di 10 m³/h.
Emissioni in acqua	Si ripropongono gli stessi parametri negli scarichi idrici.
Rifiuti in uscita	E' prevedibile che un leggero aumento della produzione di rifiuti, in parallelo al maggior utilizzo di materie prime (max 10-20 %). Rimarranno le stesse tipologie
Aree di stoccaggio di rifiuti	L'inserimento di nuovi impianti tecnologici ha, di fatto, rivisitato la disposizione di rifiuti e materie prime all'interno del Capannone. Vedere planimetria C9.
Aree di stoccaggio di materie prime, prodotti, intermedi, EoW	L'inserimento di nuovi impianti tecnologici ha, di fatto, rivisitato la disposizione, all'interno del capannone, di rifiuti e materie prime, i cui magazzini saranno implementati da scaffalature. Vedere planimetria C9.

Protocollo p_vi/aooprovi GE/2025/0035126 del 30/07/2025 - Pag. 56 di 67

Quadro Progettuale

Studio Impatto Ambientale

Rumore	Il progetto preved tecnologici, veder Acustico.				•
--------	---	--	--	--	---

Studio Impatto Ambientale

5.1.1. NUOVE MATERIE PRIME

PRODOTTO	TIPO Fasi/Unità stato Eventuali sostanze pericolose contenute		contenute	frasi P		Consumo									
CHIMICO	FORNITORE	(*)	di utilizzo	fisico	CAS Number	Denominazione sostanza	% in peso	frasi H componenti	prodotto	Classe di Pericolo	previsto (kg)				
					2634-33-5	1,2-benzisotiazol-3(2H)-one	≤0,1%	H318 H400 H302 H315 H317	P261	PERICOLOSO PER LA SALUTE	1000				
FINGARD 460	MACDERMID ENTHONE	MP	PASSIVAZ IONE	L	2682-20-4	2-metil-2H-isotiazol-3-one	≤0,1%	H301, H311 H330 H314 H318 H400(M=10) H410(M=1) H317	P280 P362+P364 P333+P313 P321 P501						
					13548-38-4	cromo nitrato	10-≤20%	H272 H411 H332 H315 H319 H317	P303+P361+P35						
			PASSIVAZ IONE		7697-37-2	acido nitrico	5-≤10%	H272 H331 H290 H314 EUH071	P303+P361+P35 3	CORROSIVO SERI RISCHI PER LA SALUTE					
FINIDIP 728.2	MACDERMID ENTHONE	MP	DOPO	L	7631-99-4	sodio nitrato	5-≤10%	H272 H319	P305+P351+P33 8 P310 P321		1000				
720.2	LIVITIONE	"NL		ZINCO NICHEL		10141-05-6	cobalto nitrato	3-≤5%	H334 H341 H350i H360F H400(M=10) H410(M=10) H317	P362+P364 P405 P501	PERICOLOSO PER L'AMBIENTE				
					1341-49-7	ammonio bifluoruro	0,3-≤1%	H301 H314 H315 H319							
			PASSIVAZ IONE DOPO ZINCO	PASSIVAZ	PASSIVAZ		10141-05-6	cobalto nitrato	5-≤10%	H334 H341 H350i H360F H400(M=10) H410(M=10) H317	P303+P361+P35	CORROSIVO			
FINIDIP	MACDERMID				12336-95-7	cromo idrossisolfato	5-≤10%	H411 H315 H319 H317	3 P305+P351+P33	PERICOLOSO PER LA	1000				
128.3	ENTHONE	MP		L	7631-99-4	sodio nitrato	1-≤3%	H272 H319	8 P310 P321	SALUTE					
120.5	120.3 ENTHONE				7664-93-9	acido solforico 96%	1-≤3%	H314 H318 H315 H319	P362+P364	PERICOLOSO PER					
				NICHEL	NICHEL	NICHEL		7681-49-4	sodio fluoruro	1-≤3%	H301 H315 H319 EUH032	P405 P501	L'AMBIENTE	1	
					7697-37-2	acido nitrico	0,3-≤1%	H272 H331 H290 H314 EUH071	1 100 1 001						
DEDECOMA	MACDEDMID			BAGNO ZINCO			Reaction mass of hydroxyethyl-DETA, DETA and dihydroxyethyl-DETA	25-≤50%	H330 H314 H318 H302 H312 H317 H335	P303+P361+P35 3 P305+P351+P33	CODDOCINO				
PERFORMA 288 BASE	MACDERMID	MP			L	102-71-6	2,2',2"-nitrilotrietanolo	1-≤3%		8 P310 P320	CORROSIVO TOSSICITA' ACUTA	1000			
200 BASE	3 BASE ENTHONE NIC	ENTHONE	NIHONE NICHEL				NICHEL		102-60-3	1,1',1",1"- etilendinitrilotetrapropan-2- olo	1-≤3%	H319	P362+P364 P405 P501	1033ICITA ACUTA	
PERFORMA 288	MACDERMID		BAGNO		124-40-3	A base di polimero cationico Dimetilamina	5-≤10%	H224 H314 H302 H332 H335 H412	P303+P361+P35 3	CORROSIVO					
BRIGHTENE	ENTHONE	MP	ZINCO	L		Polimero cationico	5-≤10%	H332	P305+P351+P33	PERICOLOSO PER LA	1000				
R MU	LIVITIONE		NICHEL		10102-20-2	sodio tellurito	0,1- ≤0,3%	H311 H331	8 P310 P321 P405 P501	SALUTE					
PERFORMA		MP ZINCO				BAGNO		10101-97-0	nichel solfato 6H ₂ O	25-≤50%	H334 H341 H350i H360D H372 H400 H410 H302 H332 H315 H317	P303+P361+P35	CORROSIVO TOSSICITA' ACUTA		
288 NI-CLP	MACDERMID ENTHONE		ZINCO NICHEL	L		Reaction mass of hydroxyethyl-DETA, DETA and dihydroxyethyl-DETA	10-≤20%	H330 H314 H318 H302 H312 H317 H335	P305+P351+P33 8 P310 P320 P362+P364 P405 P501	SERI RISCHI PER LA SALUTE PERICOLOSO PER L'AMBIENTE	1000				
					102-71-6	2,2',2"-nitrilotrietanolo	1-≤3%		1 400 1 001	LAMBILITIE					

Lo stoccaggio futuro delle materie prime fa riferimento alla planimetria C11. Rispetto alla situazione attuale (plan. B22), sono inseriti tre scaffali per le nuove materie prime: MPL11, MPL12, MPL13.

Studio Impatto Ambientale

5.1.2. EMISSIONI DI PROGETTO

I nuovi camini saranno:

_	IUMERO CAMINO	PROVENIENZA	ALTEZZA CAMINO da p.c. (m)	SEZIONE CAMINO (mm)	AREA DELLA SEZIONE (m²)	PORTATA (m³/h)	ABBATTIMENTO / TIPO DI ABBATTITORE
	1	Nuova Linea rotobarile di Zinco-Nichel e zinco alcalino	8	1000	0,694	35.000	SI – TORRE DI ABBATTIMENTO
	3	Nuova Linea statica di Zinco- Nichel e zinco alcalino	8	900	0,595	30.000	SI – TORRE DI ABBATTIMENTO

Tabella 18: Nuovi Camini

A questi due nuovi camini saranno asserviti le torri di abbattimento, che lavorano a temperatura ambiente e i cui dati sono riportati nella tabella seguente:

NUMERO CAMINO	TIPO DI ABBATTITORE	PORTATA (m³/h)	Diametro torre base (mm)	AREA TORRE BASE (m²)	ALTEZZA STADIO (m)	NUMERO STADI	LIQUIDO DI LAVAGGIO
1	TORRE DI ABBATTIMENTO	35.000	2500	4,9	3,5	1	ACQUA
3	TORRE DI ABBATTIMENTO	30.000	2500	4.9	3,5	1	ACQUA

Tabella 19: Abbattitori asserviti ai nuovi camini

Di seguito le aspirazioni convogliate ai camini e una proposta degli inquinanti da monitorare ai Camini 1, 2 e 3. Dalla disamina delle sostanze nuove previste all'interno delle vasche aspirate, sono stati inseriti, oltre ai parametri già presenti nell'AIA esistente, il Nichel e il Cobalto.

N.C.	LINEA	LAVORAZIONE / TIPO DI BAGNO	NUMERO POSIZIONI	Impianto abbattimento	PORTATA (Nm³/h)	Inquinanti
						Polveri
						Acido solforico
			N. 12 posizioni			Composti del
		Zincatura alcalina	vasche dalla 55 alla	TORRE DI ABBATTIMENTO	35000	cloro come acido cloridrico
			66			Composti del
						fluoro come
	Nuova Linea					acido fluoridrico
1	rotobarile di					Acido nitrico
	Zinco-Nichel e zinco alcalino		N. 6 posizioni vasche dalla 68 alla 73			Ammoniaca
	Zirico aicairio	Zinco Nichel				Cobalto
						Cromo III
						Cromo VI
						Nichel
						Zinco
						Polveri
	Linea statica					Acido solforico
2	zincatura alcalina	/incatura alcalina	Da 29 a 36	-	11.000	Composti del
	Ziii Odidi di di di li li d					fluoro come
						acido fluoridrico

Studio Impatto Ambientale

N.C.	LINEA	LAVORAZIONE / TIPO DI BAGNO	NUMERO POSIZIONI	Impianto abbattimento	PORTATA (Nm³/h)	Inquinanti
						Acido nitrico
						Ammoniaca
						Cobalto
		Decapaggio (acido cloridrico)	Posizioni 52/51			Cromo III
		(doldo cionanco)				Cromo VI
						Nichel
						Zinco
						Polveri
		Zinco Nichel	Posizioni 20, 21, 22, 23 e 24			Acido solforico
						Composti del cloro come acido cloridrico
						Composti del fluoro come
	Nuova Linea					acido fluoridrico
3	statica di Zinco- Nichel e zinco			TORRE DI ABBATTIMENTO	30000	Acido nitrico
	alcalino			/ CDD/ (1 TIME (1 TO		Ammoniaca
						Cobalto
		Zinco alcalino	Posizioni 25 e 26			Cromo III
						Cromo VI
						Nichel
						Zinco

Tabella 20: Proposta parametri camini

Studio Impatto Ambientale

Di seguito un estratto dello schema a blocchi di progetto (Allegato C7).

Linea di zincatura statica

Linea di zincatura rotobarile CARICO/SCARICO CARICO / SCARICO (posizione 1) (posizioni da 1 a 5 PRESGRASSATURA SGRASSATURA CHIMICA (posizioni 42, 43) (posizioni da 8 a 13) RISCIACQUO RISCIACQUI (posizioni 14, 15) DECAPAGGIO ACIDO SOLFORICO CAMINO 2 (posizioni da 45 a 50) DECAPAGGIO DECAPAGGIO ACIDO CLORIDRICO (posizioni da 16 a 24) (posizioni da 51 a 52) RISCIACQUI RISCIACQUI (posizioni 25, 26) (posizioni 53, 54) SGRASSATURA ELETTROLITICA SGRASSATURA ELETTROLITICA (posizioni 55, 56) (posizioni 27, 28) RISCIACQUO RISCIACQUO (posizione 29, 30) NEUTRALIZZAZIONE CARRELLO (posizione 58) (posizione 31) RISCIACQUO (posizione 59) RISCIACQUO/TRASLATORE ZINCO ACIDO (posizione 32) (posizioni 60, 61) ZINCO ACIDO RISCIACQUO (posizioni da 33 a 5 (posizione 62) RISCIACQUO SU TRASLATORE RISCIACQUO (posizione 27-63) (posizione 52) ZINCO ALCALINO RISCIACQUI TRASLATORE (posizioni 25, 26) (posizioni 53, 54) ZINCO ALCALINO ZINCO ALCALINO (posizioni da 29 a 36) (posizioni da 55 a 66 RISCIACQUO (posizione 28) RISCIACQUO (posizione 67) ZINCO NICHEL ALCALINO (posizioni da 20 a 24) ZINCO NICHEL ALCALINO (posizioni da 68 a 73) RISCIACQUO (posizione 19) RISCIACQUO NITRICA (posizione 74) (posizione 18) **PASSIVAZIONI** SCRUBBER RISCIACQUO (posizioni 2, 4, 6, 7, 75, 77) SCRUBBER (posizione 17) RISCIACQUI PASSIVAZIONI (posizioni 3, 5, 76, 78) (posizioni 9, 11, 13, 14, 16) RISCIACQUO/TRASLATORE RISCIACQUI (posizione 79) (posizioni 10, 12, 15, 17) CAMINO 3 CAMINO 1 ESSICCAZIONE (FORNI) CENTRIFUGA RISCALDATA (posizioni 7, 8)

Studio Impatto Ambientale

La configurazione futura delle emissioni sarà la seguente:

CONVOGLIATE: Camini da linee produttive

NUMERO CAMINO	POSIZIONE AMMINISTRATIVA	PROVENIENZA	ALTEZZA CAMINO da p.c. (m)	AREA DELLA SEZIONE (m²)	PORTATA AUTORIZZATA (Nm³/h)	ABBATTIM ENTO	OBBLIGO ANALISI
1	Camino nuovo Da autorizzare	Linea rotobarile di Zinco-Nichel e zinco alcalino	8	0,694	35.000	SI	SI – VEDI PROPOSTA
2	Autorizzato	Linea Statica - Zincatura alcalina	8	0,385	11.000	NO	IS
3	Camino nuovo Da autorizzare	Linea statica di Zinco-Nichel e zinco alcalino	8	0,595	30.000	SI	SI – VEDI PROPOSTA

L'alternanza delle lavorazioni farà in modo che funzionino contemporaneamente i camini:

1 e 2 oppure, 2 e 3 oppure in simultanea in quanto vi sono delle vasche che devono essere sempre aspirate.

Camini dei generatori di calore:

Numero Camino	Impianto	A SERVIZIO DI	POTENZA (kW)
C1	Caldaia a metano	Impianto statico	35
C2	Caldaia a metano	Impianto statico	35
C3	Caldaia a metano	Impianto statico	35
CT1	Centrale termica a metano (impianto termico misto)	Riscaldamento / mantenimento temperatura dei bagni e riscaldamento locali acqua servizi	384

DIFFUSE

NUMERO TORRINO	PROVENIENZA	ABBATTIMENTO / TIPO DI ABBATTITORE	OBBLIGO ANALISI
Torrino grande	Estrazione aria	NO	NO
Torrino 1	Estrazione aria	NO	NO
Torrino 2	Estrazione aria	NO	NO
Torrino 3	Estrazione aria	NO	NO
Torrino 4	Estrazione aria	NO	NO
Torrino 5	Estrazione aria	NO	NO
1	Estrazione aria	NO	NO

Studio Impatto Ambientale

5.1.3. GESTIONE ACQUE DI PROGETTO

La gestione delle acque, industriali, civili e meteoriche non cambia con la realizzazione del progetto proposto.

Riassumendo: le acque derivanti dai risciacqui, le meteoriche dell'area nei pressi del depuratore e quelle derivanti dal lavaggio pavimenti verranno convogliate al depuratore, così come descritto nel paragrafo dedicato, in quanto, come già scritto, le linee future lavoreranno in modo alternato a quelle già presenti.

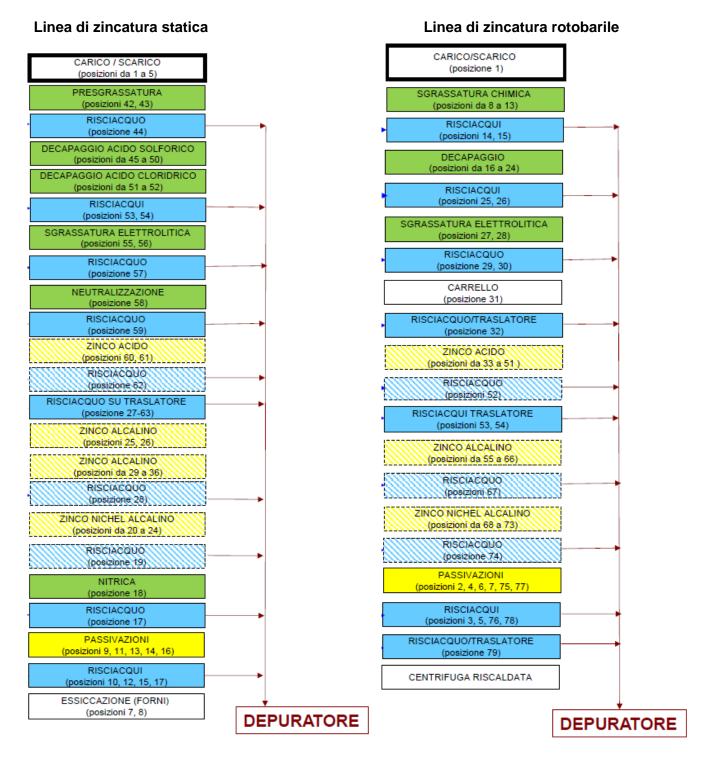
Il depuratore scaricherà nel punto SF1 in fognatura gestita da Acque del Chiampo S.p.A.

Lo scarico è dotato di autocampionatore in continuo, è frequentemente controllato dal gestore della fognatura e la ditta ha in obbligo un controllo autonomo semestrale.

Le acque meteoriche incidenti sui tetti e su piazzali, inferiori a 5.000 m², dove non avvengono attività tranne la movimentazione dei mezzi e non vengono stoccate sostanze pericolose, sono convogliate allo scarico SF2.

Tale scarico convoglia in una condotta acque bianche gestita da Acque del Chiampo e successivamente in Roggia Signoletto.

Alla luce della documentazione visionata per la redazione di questa documentazione si è notato che i parametri ricercati allo scarico dell'SF2 sono mutuati da quelli ricercati nell'SF1.


Considerata la natura dello scarico SF2 si propone, nel PMC allegato (All. E11) una riduzione di tali parametri, non essendo lo scarico di natura produttiva. Nello specifico si propone la non ricerca di: Aldeidi Alifatiche, Cianuri totali, il Boro e i Solventi Organici aromatici, in quanto nelle analisi relative agli ultimi tre anni, ne sono state ritrovate tracce o valori inferiori ai limiti di rilevabilità strumentali.

Inoltre, si precisa che:

- Dalla disamina delle Schede di Sicurezza, un prodotto, utilizzato in un bagno di zinco acido rotobarile, contiene una speciazione di aldeide con una percentuale < al 5%. I bagni di Zincatura rotobarile acida non sono aspirati, e quindi si rende verosimilmente non possibile il loro dilavamento nelle acque meteoriche;
- I Cianuri non sono utilizzati nel processo produttivo;
- Il Boro e i Solventi Organici Aromatici non risultano nelle emissioni e quindi si rende verosimilmente non possibile il loro dilavamento nelle acque meteoriche;

Di seguito gli schemi delle uscite delle linee in Progetto (Allegato C7).

Studio Impatto Ambientale

Studio Impatto Ambientale

5.2 ELEMENTI DI IMPATTO FUTURI

La proposta progettuale su cui verte l'intero studio vede l'ampliamento delle vasche attive, con l'inserimento di altri bagni di zincatura, ma l'aspetto determinante nella valutazione degli impatti è che le linee nuove lavoreranno in parallelo a quelle esistenti e non in serie, in modo da non aumentare l'attività produttiva ma di poter avere un maggiore speciazione nei prodotti offerti.

Elementi di Impatto Ambientale	Descrizione
Emissioni in Atmosfera	L'implementazione delle linee galvaniche comporta la realizzazione di ulteriori aspirazioni, che saranno abbattute da due scrubber e convogliate in atmosfera da due nuovi camini: 1 e 3. Tali camini si andranno a sommare al camino 2 già esistente. Da studi eseguiti dalla società scrivente (modellazione prognostica del trasporto aereo e dispersione inquinanti dalle emissioni) per un'installazione galvanica, con dati di input significativamente più elevati e poco distante dal sito oggetto di studio si è concluso che le ricadute erano poco significative.
Emungimento acque	L'attività è titolare di una concessione derivazione d'acqua. L'implementazione delle due linee non produrrà un consumo ulteriore di acqua, in quanto le linee lavoreranno in parallelo e non in serie.
Scarichi industriali acque	Le due linee lavoreranno in parallelo e non in serie, quindi, la sezione di depurazione rimarrà tale, permettendo uno scarico industriale massimo di 10 m³/h, per un funzionamento sulle 16 h. L'installazione è dotata di dispositivi atti a evitare fuoriuscite incontrollate di flussi inquinanti. Lo scarico confluisce nella rete fognaria gestita da Acque del Chiampo.
Gestione acque di pioggia	La gestione di acque di pioggia rimane invariata.
Gestione Rifiuti	La gestione dei rifiuti non cambia: si avvale del deposito temporaneo preliminare alla raccolta con scelta quantitativa. Le zone di raccolta non cambiano.
Suolo e sottosuolo	La superficie dell'intera installazione è pavimentata. Per la realizzazione delle nuove linee non verranno eseguiti degli scavi.
Emissioni acustiche	Il progetto prevede l'installazione di nuovi impianti esterni, che producono rumorosità ambientale. Per le valutazioni si faccia riferimento all'Allegato 1 del SIA
Emissioni luminose	I corpi luminosi sono paralleli al p.c.
Traffico indotto	L'ampliamento della tipologia di lavorazione non aumenterà il traffico indotto, in quanto il lavoro sarà eseguito in parallelo. Il sito è in piena zona industriale, ben servita dalla rete stradale. A tal proposito si ricorda che è stato di recente inaugurato il nuovo Casello di Montecchio Maggiore, e il sito si trova in una zona di agevole percorso e di rapido raggiungimento. Il traffico prodotto dall'attività è agevolmente assorbito dalla nuova rete stradale
Consumo di Risorse	L'ampliamento delle linee produttive non prevede un consumo significativo in termini di risorse idriche, energetiche e di materie prime.

Tabella 21: Elementi di Impatto Ambientale futuri

Studio Impatto Ambientale

5.3 DEFINIZIONE AREA DI INDAGINE

A pagina precedente sono elencati gli elementi di impatto futuri. Considerando la tipologia di impatti, si definisce un'areale di studio di circa **250 metri dal perimetro aziendale**, in quanto:

- 1. Il Progetto prevede l'implementazione di due linee esistenti all'interno di capannone chiuso, interno alla Zona Industriale di Montecchio Maggiore e per il quale non sono previsti ampliamenti;
- 2. Le lavorazioni saranno alternative l'una all'altra, non si prevede un aumento consistente dei consumi di materie prime e acqua;
- 3. Si prevedono due nuovi camini (oltre al camino 2) entrambi dotati scrubber. Le vasche alcaline di zinco e zinco nichel saranno aspirate, con convogliamento delle relative emissioni ai camini 1 e 3;
- 4. L'implementazione delle nuove linee non comporterà un aumento dei consumi di acqua (le linee lavoreranno in parallelo) e quindi di scarico. Inoltre, lo scarico industriale e lo scarico delle acque meteoriche è gestito da Acque del Chiampo S.p.A.

Per i motivi sopra elencati, si propone un areale di studio limitato alla Zona Industriale.

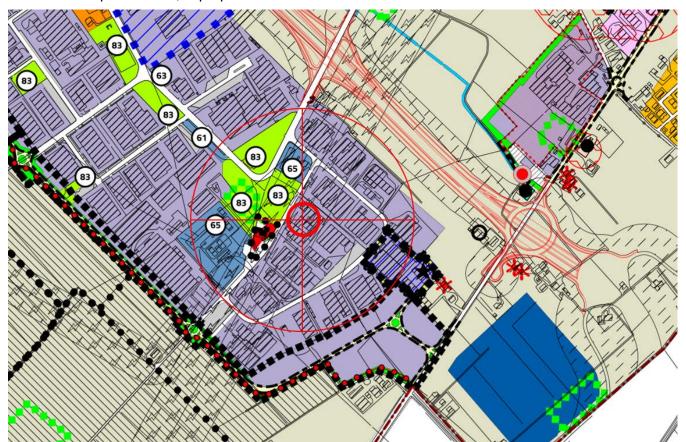


Figura 13: Definizione area di studio degli impatti

Da studi eseguiti dallo scrivente (modellazione prognostica del trasporto aereo e dispersione inquinanti dalle emissioni) per un'installazione galvanica, con **dati di input significativamente più elevati** e poco distante dal sito oggetto di studio, è emerso un valore di circa 400 m per il raggio massimo di ricaduta delle emissioni in atmosfera.

Studio Impatto Ambientale

6. FASE DI CANTIERE

La fase di "cantiere" si configura come l'installazione di una linea parallela rotobarile e l'inserimento delle vasche nella linea statica. Il tutto eseguito non in un'unica soluzione ma attraverso passaggi calmierati nel tempo per consentire una continuità produttiva e una modulazione di investimenti.

Questo comporta che il cantiere oggetto del PAUR si identifica in:

- 1. Lavori di installazione impiantistica della prima linea;
- 2. Approntamenti per il corretto funzionamento della linea di Zincatura roto e avvio impianto per il camino n. 2.

Sono così individuabili:

Principali operazioni svolte nell'esercizio del cantiere	Intervento
Sbancamenti	NO
Movimento di terra	NO
Attività estrattive	NO
Attività di cantiere edile	NO
Attività di installazione impianti	SI
Deviazione provvisoria dei corsi d'acqua	NO
Elevazioni e recinzioni	NO
Uso di strade per l'accesso al cantiere	NO
Uso di acqua	NO
Uso di energia	SI
Produzione di rifiuti	SI
Occupazione di personale esterno	SI

Studio Impatto Ambientale

6.1 ELEMENTI DI IMPATTO IN FASE DI CANTIERE

Principali fattori di impatto dovuti alle attività sopraelencate:

Elementi di impatto	Descrizione cantiere progetto
Emissioni in	Durante l'installazione della linea parallela di rotobarile continuerà l'attività come descritta
Atmosfera	nel ciclo tecnologico.
Emungimento	Durante l'installazione della linea galvanica non si prevedono emungimenti di acque.
acque	
Scarichi acque	Durante l'installazione della linea galvanica non si prevedono scarichi di cantiere.
Gestione acque	Le acque di pioggia saranno gestite come nella predisposizione attuale.
di pioggia	
Gestione Rifiuti	I rifiuti da cantiere saranno gestiti in conformità ai contratti stipulati dal committente dei
	lavori con le ditte appaltatrici.
Suolo	Il progetto non prevede consumo di suolo.
Sottosuolo	Durante l'installazione della linea galvanica non si prevedono scavi.
Emissioni	Si ricorda che la rumorosità può essere derogabile per l'attività di cantiere stessa.
acustiche	
Emissioni	Non verrà coinvolto tale aspetto.
luminose	
Traffico indotto	Il traffico indotto dal cantiere sarà simile a quello valutato nel progetto futuro.