Matrice N

O/D	Α	В	С	D
Α	0,00	0,93	0,07	0,00
В	0,68	0,00	0,32	0,00
С	0,26	0,74	0,00	0,00
D	0.00	0.00	0.00	0.00

Matrice M

O/D	Α	В	С	D
Α	0	723	58	0
В	674	0	321	0
С	134	374	0	0
D	0		^	^

A=	SR 11	oves
B=	SR 11	est

C= via Creazzo

1) Larghezza dell'anello:

$ANN_A =$	8,5	m
$ANN_B =$	8,5	m
$ANN_C =$	8,5	m
ANN _D =	/	m

2) Larghezza dei bracci:

ENT _A =	6,6	m
$ENT_B =$	6,6	m
$ENT_C =$	5,9	m
$ENT_D =$	/	m

3) Larghezza dell'isola spartitraffico:

$SEP_A =$	9,5	m
$SEP_B =$	11,9	m
SEP _C =	11,1	m
SEP _D =	/	m

4) Flusso uscente dai rami:

Q _{uA} =	808	eph
$Q_{uB} =$	1097	eph
$Q_{UC} =$	379	eph
$Q_{uD} =$	/	eph

5) Flusso transitante all'anello:

$Q_{cA} =$	374	eph
$Q_{cB} =$	58	eph
$Q_{cC} =$	674	eph
$Q_{cD} =$	/	eph

6) Flusso uscente equivalente ai rami in funzione di SEP:

Q'uA =	296	eph
Q'uB =	227	eph
Q'uC =	99	eph
Q' _{11D} =	/	eph

7) Flusso di disturbo:

$Q_{dA} =$	547	eph
$Q_{dB} =$	200	eph
$Q_{dC} =$	708	eph
Qun =	/	enh

CALCOLO DELLA CAPACITA' SEMPLICE DELLA ROTATORIA

8) Calcolo degli scalari $\delta_{\rm i} \, {\rm per} \, {\rm la}$ determinazione di K_i:

$\delta_A =$	1,36
$\delta_B =$	1,48
$\delta_C =$	1,47
δ _n =	/

Il più piccolo valore di $\delta_{\rm i}$ è : 1,36 e si verifica sul ramo :

9) Calcolo delle capacità con raggiungimento della capacità al ramo congestionato:

K _A =	1060	eph	capacità semplice della rotatoria
V -	1 403	onh	

$K_B = 1493$ eph $K_C = 813$ eph $K_D = /$ eph

Pertanto se si incrementano i flussi di 1,36 il ramo congestionato è mentre gli altri bracci hanno riserve di capacità date da:

-		
$\Delta K_A =$	0	eph
$\Delta K_B =$	139	eph
$\Delta K_C =$	122	eph
$\Delta K_D =$	/	eph

10 Calcolo dei flussi entranti equivalenti:

Q' _{eA} =	596	eph
Q' _{eB} =	760	eph
Q'ec =	410	eph
Q' _{eD} =	/	eph

Matrice N

O/D	Α	В	С	D
Α	0,00	0,93	0,07	0,00
В	0,70	0,00	0,30	0,00
С	0,26	0,74	0,00	0,00
D	0.00	0.00	0.00	0.00

Matrice M

O/D	Α	В	С	D
Α	0	771	58	0
В	760	0	331	0
С	134	384	0	0
D	0	0	0	0

C= via Creazzo

A= SR 11 ovest B= SR 11 est 1) Larghezza dell'anello:

$ANN_A =$	8,5	n
$ANN_B =$	8,5	n
$ANN_C =$	8,5	n
ANINI -	,	

2) Larghezza dei bracci:

ENT _A =	6,6	m
$ENT_B =$	6,6	m
$ENT_C =$	5,9	m
$ENT_D =$	/	m

3) Larghezza dell'isola spartitraffico:

$SEP_A =$	9,5	m
$SEP_B =$	11,9	m
$SEP_C =$	11,1	m
$SEP_D =$	/	m

4) Flusso uscente dai rami:

Q _{uA} =	894	eph
$Q_{UB} =$	1155	eph
$Q_{UC} =$	389	eph
$Q_{uD} =$	/	eph

5) Flusso transitante all'anello:

$Q_{cA} =$	384	eph
$Q_{CB} =$	58	eph
$Q_{cC} =$	760	eph
$Q_{cD} =$	/	eph

6) Flusso uscente equivalente ai rami in funzione di SEP:

Q'uA =	328	eph
Q' _{uB} =	239	eph
Q' _{UC} =	101	eph
Q'n =	/	eph

7) Flusso di disturbo:

$Q_{dA} =$	577	eph
Q _{dB} =	208	eph
$Q_{dC} =$	792	eph
$Q_{dD} =$	/	eph

CALCOLO DELLA CAPACITA' SEMPLICE DELLA ROTATORIA

8) Calcolo degli scalari $\delta_{\rm i}$ per la determinazione di K_i:

$\delta_A =$	1,28
$\delta_B =$	1,36
δ _C =	1,37
. 2	- /

Il più piccolo valore di $\delta_{\rm i}$ è : 1,28 e si verifica sul ramo :

9) Calcolo delle capacità con raggiungimento della capacità al ramo congestionato: $K_A = 1065$ eph capacità semplice della rotatoria $K_8 = 1498$ eph

il ramo congestionato è

K _C = K _D =		eph eph	
lanta sa	ai in ora	mantana i fluori di	1.00

Pertanto se si incrementano i flussi di 1,28 mentre gli altri bracci hanno riserve di capacità date da:

ΔKA =	4	ebii
$\Delta K_B =$	102	eph
$\Delta K_C =$	106	eph
$\Delta K_D =$	/	eph

10 Calcolo dei flussi entranti equivalenti:

Q'eA =	633	eph
Q' _{e8} =	833	eph
Q'ec =	418	eph
$Q'_{eD} =$	/	eph

11 Dai grafici si ricavano: 1 - i tempi medi di attesa sui bracci della rotatoria w_i (in sec) 2 - il 99° percentile della lunghezza di coda q_i

^{11.} Dai grafici si ricavano: 1 - i tempi medi di attesa sui bracci della rotatoria w_i(in sec) 2 - il 99° percentile della lunghezza di coda q_i w_A = 7 sec

CALCOLO DELLA CAPACITA' TOTALE DELLA ROTATORIA

12| Esprimendo Q_d in funzione dei flussi entranti si ha che:

 $Q_{dA} = \{0+0\}QeD+0,74QeC$ $Q_{dB} = \{0,07+0\}QeA+0QeD$ $Q_{dC} = \{0,68+0\}QeB+0QeA$ $Q_{dD} = /$

Si risolve il seguente sistema di equazioni:

$$\begin{split} G_{oA} &= \{1330-0.7Q_{cb}\}[1+0.1[ENT-3.5]] \\ &= 1742-0QeD-0.675QeC \\ Q_{oB} &= [1330-0.7Q_{od}][1+0.1[ENT-3.5]] \\ &= 1742-0.068QeA-0QeD \\ Q_{oC} &= \{1330-0.7Q_{od}][1+0.1[ENT-3.5]] \\ &= 1649-0.588QeB-0QeA \\ Q_{oD} &= \{1330-0.7Q_{oD}][1+0.1[ENT-3.5]] \\ &= f(330-0.7Q_{oD})[1+0.1[ENT-3.5]] \\ &= f$$

Ottenendo la capacità totale della rotatoria pari a: mentre la capacità pratica totale risulta essere uguale a:

Calcolo eseguito per risolvere il sistema di equazioni \mathbf{Q}_{ex} I risultati che si ottengono sono riportati di seguito:

					1330	0,7
$Q_{eA} =$	1286	eph		1,31	1742	0,917
$Q_{eB} =$	1655	eph		1,31	1742	0,917
Q _{eC} =	677	eph	-0,2475	1,24	1649	0,868
$Q_{eD} =$	0	eph		0	0	0,000
				1742	0,000	0,675
				1742	0,068	0,000
				1649	0,588	0,000
				0	0.000	0.000

Capacità totale della rotatoria	3617
Capacità pratica della rotatoria	2893
Flusso totale entrante nella rotatoria	2284
Grado di saturazione della rotatoria rispetto la capacità totale	63%
Grado di saturazione della rotatoria rispetto la capacità pratica	79%

	Tempi di attesa ai rami	Tempo medio attesa	LOS rotatoria HCM 2000
Ramo A	7 s		
Ramo B	5 s	6 s	A
Ramo C	6 s		

CALCOLO DELLA CAPACITA' TOTALE DELLA ROTATORIA

12 Esprimendo Q_d in funzione dei flussi entranti si ha che:

 $Q_{dA} = \{0+0\}QeD+0.74QeC$ $Q_{dB} = \{0.07+0\}QeA+0QeD$ $Q_{dC} = \{0.7+0\}QeB+0QeA$ $Q_{dD} = /$

Si risolve il seguente sistema di equazioni:

$$\begin{split} G_{oA} &= \{1330-0.7Q_{oB}\}[1+0.1[ENT-3.5]] \\ &= 1742-0QeD+0.68QeC \\ Q_{oB} &= \{1330-0.7Q_{oB}][1+0.1[ENT-3.5]] \\ &= 1742-0.064QeA-0QeD \\ Q_{oC} &= \{1330-0.7Q_{oC}][1+0.1[ENT-3.5]] \\ &= 1649-0.605QeB-0QeA \\ Q_{oD} &= \{1330-0.7Q_{oD}][1+0.1[ENT-3.5]] \\ &= f(330-0.7Q_{oD})[1+0.1[ENT-3.5]] \\ &= f($$

Ottenendo la capacità totale della rotatoria pari a:	3608	eph
mentre la capacità pratica totale risulta essere uguale a:	2887	eph

Calcolo eseguito per risolvere il sistema di equazioni Q_{eX} I risultati che si ottengono sono riportati di seguito:

risuitati che si ottengono sono riportati di seguito:							
						1330	0,7
Q _{eA} =	1302	eph			1,31	1742	0,917
Q _{eB} =	1659	eph			1,31	1742	0,917
Q _{eC} =	647	eph	-0,9772		1,24	1649	0,868
Q _{eD} =	0	eph			0	0	0,000
					1742	0,000	0,680
					1742	0,064	0,000
					1649	0,605	0,000
					0	0,000	0,000

Capacità totale della rotatoria	3608
Capacità pratica della rotatoria	2887
Flusso totale entrante nella rotatoria	2438
Grado di saturazione della rotatoria rispetto la capacità totale	68%
Grado di saturazione della rotatoria rispetto la capacità pratica	84%

	Tempi di attesa ai rami	Tempo medio attesa	LOS rotatoria HCM 2000
Ramo A	8 s		
Ramo B	7 s	7 s	A
Ramo C	6 s		

ROTATORIA 1 - STATO ATTUALE

Matrice N

O/D	Α	В	С	D
Α	0,00	0,95	0,05	0,00
В	0,75	0,00	0,25	0,00
С	0,28	0,72	0,00	0,00
D	0.00	0.00	0.00	0.00

Matrice M

O/D	Α	В	C	D
Α	0	732	40	0
В	649	0	220	0
С	99	258	0	0
D	Λ	Λ	Λ	Λ

A=	SR 1	1	ovest
R=	SP 1	1	est.

C= via Creazzo

1) Larghezza dell'anello:

$ANN_A =$	8,5	m
$ANN_B =$	8,5	m
$ANN_C =$	8,5	m
ANINI -	,	

2) Larghezza dei bracci:

```
ENT_A = 6.6 m

ENT_B = 6.6 m

ENT_C = 5.9 m

ENT_D = / m
```

3) Larghezza dell'isola spartitraffico:

SEP _A =	9,5	m	
$SEP_B =$	11,9	m	
SEP _C =	11,1	m	
CED -	/	m	

4) Flusso uscente dai rami:

Q _{uA} =	748	eph
Q _{uB} =	990	eph
Q _{uC} =	260	eph
0=	/	eph

5) Flusso transitante all'anello:

Q _{cA} =	258	eph
$Q_{cB} =$	40	eph
$Q_{cC} =$	649	eph
$Q_{cD} =$	/	eph

6) Flusso uscente equivalente ai rami in funzione di SEP:

Q'uA =	274	eph
Q' _{uB} =	205	eph
Q' _{uC} =	68	eph
Q'uD =	/	eph

7) Flusso di disturbo:

$Q_{dA} =$	422	eph
$Q_{dB} =$	169	eph
$Q_{dC} =$	665	eph
_		

CALCOLO DELLA CAPACITA' SEMPLICE DELLA ROTATORIA

8) Calcolo degli scalari δ_i per la determinazione di K_i :

$$\delta_{A} = 1,50$$
 $\delta_{B} = 1,70$
 $\delta_{C} = 1,77$
 $\delta_{D} = /$

Il più piccolo valore di $\delta_{\rm i}$ è :

1,50 e si verifica sul ramo :

)	Calcolo de	lle cap	acità c	on raggiungimento della capacità al ramo congestionato:
	K. =	1162	eph	capacità semplice della rotatoria

$K_B = 1510$ eph	

$$K_C = 784$$
 eph
 $K_D = /$ eph

Pertanto se si incrementano i flussi di 1,50 il ran mentre gli altri bracci hanno riserve di capacità date da: il ramo congestionato è

$\Delta K_A =$	4	eph
$\Delta K_B =$	206	eph
$\Delta K_C =$	248	eph
1.14		

10 Calcolo dei flussi entranti equivalenti:

$Q'_{eA} =$	589	eph
Q' _{eB} =	663	eph
Q' _{eC} =	288	eph
0' -	1	onh

- 11] Dai grafici si ricavano: 1 i tempi medi di attesa sui bracci della rotatoria w_i (in sec) 2 il 99° percentile della lunghezza di coda q_i

ROTATORIA 1 - IPOTESI DI PROGETTO

C= via Creazzo

Matrice N

O/D	Α	В	С	D
Α	0,00	0,95	0,05	0,00
В	0,77	0,00	0,23	0,00
С	0,27	0,73	0,00	0,00
D	0.00	0.00	0.00	0.00

Matrice M

	O/D	Α	В	C	О
ſ	Α	0	811	40	0
	В	792	0	236	0
I	С	99	274	0	0
ı	D	Ω	Ω	Ω	Λ

A=	SR 11 ovest
B=	SR 11 est

1) Larghezza dell'anello:

$ANN_A =$	8,5	r
$ANN_B =$	8,5	r
$ANN_C =$	8,5	-
ANN. =	1	

2) Larghezza dei bracci:

$ENT_A =$	6,6	m
$ENT_B =$	6,6	m
$ENT_C =$	5,9	m
$ENT_D =$	/	m

3) Larghezza dell'isola spartitraffico:

$SEP_A =$	9,5	r
$SEP_B =$	11,9	r
SEP _C =	11,1	r
CED -	,	

4) Flusso uscente dai rami:

$Q_{uA} =$	891	eph
$Q_{uB} =$	1085	eph
$Q_{UC} =$	276	eph
$Q_{uD} =$	/	eph

5) Flusso transitante all'anello:

$Q_{cA} =$	274	eph
$Q_{cB} =$	40	eph
$Q_{cC} =$	792	eph
0 - =	/	enh

6) Flusso uscente equivalente ai rami in funzione di SEP:

Q'uA =	327	eph
Q' _{uB} =	224	eph
Q' _{uC} =	72	eph
Q' _{uD} =	/	eph

7) Flusso di disturbo:

Q _{dA} =	471	ер
Q _{dB} =	181	ер
Q _{dC} =	804	ер

CALCOLO DELLA CAPACITA' SEMPLICE DELLA ROTATORIA

8) Calcolo degli scalari $\delta_{\rm i}$ per la determinazione di K;:

$\delta_A =$	1,36
$\delta_B =$	1,47
$\delta_{\rm C} =$	1,55
S- =	/

Il più piccolo valore di $\delta_{\rm i}$ è : 1,36 e si verifica sul ramo :

9) Calcolo delle capacità con raggiunaimento della capacità al ramo congestionato:

K _A =	1155	eph (capacità semplice della ro	tatoria	
$K_B =$	1516	eph			
K _C =	700	eph			
$K_D =$	/	eph			
tanto se	si incre	mentano i fl	ussi di 1,36	il ram	
ntre gli altri bracci hanno riserve di capacità date da:					

no congestionato è ment

$\Delta K_A =$	0	eph
$\Delta K_B =$	118	eph
$\Delta K_C =$	193	eph
$\Delta K_D =$	/	eph

10 Calcolo dei flussi entranti equivalenti:

Q'eA =	650	eph
Q' _{eB} =	785	eph
Q' _{eC} =	301	eph
Q' _{eD} =	/	eph

- $\begin{array}{l} 11/\operatorname{Dai}\ grafici\ si\ ricavano:\\ 1-i\ tempi\ medi\ di\ attesa\ sui\ bracci\ della\ rotatoria\ w_i\{in\ sec\}\\ 2-il\ 99^{\circ}\ percentile\ della\ lunghezza\ di\ coda\ q_i \end{array}$

$w_A =$	4	sec	$q_A =$	5	m
$w_B =$	2	sec	$q_B =$	4	m
w _c =	3	sec	$q_C =$	2	m
	,		~ -	,	

CALCOLO DELLA CAPACITA' TOTALE DELLA ROTATORIA

12| Esprimendo Q_d in funzione dei flussi entranti si ha che:

 $\begin{aligned} &Q_{dA} = \ (0+0)QeD+0,72QeC \\ &Q_{dB} = \ (0,05+0)QeA+0QeD \\ &Q_{dC} = \ (0,75+0)QeB+0QeA \\ &Q_{dD} = \ / \end{aligned}$

Si risolve il seguente sistema di equazioni:

$$\begin{split} &Q_{oA} = \{1330\text{-}0.7Q_{oA}\}[1\text{+}0.1(\text{ENT-}3.5)] \\ &= 1742\text{-}0\text{Qe}\text{D-}0.663\text{QeC} \\ &Q_{oB} = \{1330\text{-}0.7Q_{oB}][1\text{+}0.1(\text{ENT-}3.5)] \\ &= 1742\text{-}0.048\text{QeA-}0.026 \\ &Q_{oC} = \{1330\text{-}0.7Q_{oC}][1\text{+}0.1(\text{ENT-}3.5)] \\ &= 1649\text{-}0.648\text{QeB-}0.0eA \\ &Q_{oD} = \{1330\text{-}0.7Q_{oD}][1\text{+}0.1(\text{ENT-}3.5)] \\ &= / \end{split}$$

Ottenendo la capacità totale della rotatoria pari a: mentre la capacità pratica totale risulta essere uguale a:

Calcolo eseguito per risolvere il sistema di equazioni \mathbf{Q}_{eX} I risultati che si ottengono sono riportati di seguito:

						1330	0,7
$Q_{eA} =$	1370	eph		1	1,31	1742	0,917
Q _{eB} =	1677	eph		1	1,31	1742	0,917
Q _{eC} =	562	eph	-0,05924	1	,24	1649	0,868
$Q_{eD} =$	0	eph			0	0	0,000
				1	742	0,000	0,663
				1	742	0,048	0,000
				1	649	0,648	0,000
					0	0,000	0,000

Capacità totale della rotatoria	3609
Capacità pratica della rotatoria	2887
Flusso totale entrante nella rotatoria	1998
Grado di saturazione della rotatoria rispetto la capacità tot	55%
Grado di saturazione della rotatoria rispetto la capacità pra	69%

	Tempi di attesa ai rami	Tempo medio atteso	LOS rotatoria HCM 2000
Ramo A	4 s		
Ramo B	2 s	3 s	A
Ramo C	3 s		

sec sec

CALCOLO DELLA CAPACITA' TOTALE DELLA ROTATORIA

12| Esprimendo Q_d in funzione dei flussi entranti si ha che:

 $\begin{aligned} &Q_{dA} = \{0+0\}QeD+0.73QeC\\ &Q_{dB} = \{0.05+0\}QeA+0QeD\\ &Q_{dC} = \{0.77+0\}QeB+0QeA\\ &Q_{dD} = \textit{/} \end{aligned}$

Si risolve il seguente sistema di equazioni:

$$\begin{split} &Q_{o,h} = \{1330-0.7Q_{o,h}][+0.1[ENT-3.5]] \\ &= 1742\cdot OQeD-0.674QeC \\ &Q_{oB} = \{1330-0.7Q_{o,B}][+0.1[ENT-3.5]] \\ &= 1742\cdot 0.043QeA \cdot OQeC \\ &Q_{oC} = \{1330-0.7Q_{o,C}][+0.1[ENT-3.5]] \\ &= 1649\cdot 0.669\cdot QeB \cdot OQeA \\ &Q_{oD} = \{1330-0.7Q_{o,D}][+0.1[ENT-3.5]] \\ &= f(1300-0.7Q_{o,D})[+0.1[ENT-3.5]] \\ &= f(1300-0.7Q_{o,D})[+0.$$

Ottenendo la capacità totale della rotatoria pari a: mentre la capacità pratica totale risulta essere uguale a: 3596 2877

Calcolo eseguito per risolvere il sistema di equazioni $Q_{\rm eX}$ I risultati che si ottengono sono riportati di seguito:

					1330	0,7
$Q_{eA} =$	1389	eph		1,31	1742	0,917
$Q_{eB} =$	1682	eph		1,31	1742	0,917
Q _{eC} =	525	eph	-0,39494	1,24	1649	0,868
$Q_{eD} =$	0	eph		0	0	0,000
				1742	0,000	0,674
				1742	0,043	0,000
				1649	0,669	0,000
				0	0,000	0,000

Capacità totale della rotatoria	3596
Capacità pratica della rotatoria	2877
Flusso totale entrante nella rotatoria	2252
Grado di saturazione della rotatoria rispetto la capacità totale	63%
Grado di saturazione della rotatoria rispetto la capacità pratica	78%

	Tempi di attesa ai rami	Tempo medio attesa	LOS rotatoria HCM 2000
Ramo A	6 s		
Ramo B	4 s	5 s	A
Ramo C	5 s		

ROTATORIA 2 - STATO ATTUALE

C= SR 11 ovest

Matrice N

O/D	Α	В	С	D
Α	0,00	0,00	1,00	0,00
В	0,00	0,00	0,00	0,00
С	1,00	0,00	0,00	0,00
D	0,00	0,00	0,00	0,00

Matrice M

O/D	Α	В	С	D
Α	0	0	979	0
В	0	0	0	0
С	954	0	0	0
D	Λ	Λ	Λ	Λ

A= SR 11 est B= accesso CC

1) Larghezza dell'anello:

ANN_A = 8 ANN_B = ANN_c = ANN_D =

2) Larghezza dei bracci:

 $ENT_A = 6.5 m$ $ENT_B = 6.5 m$ $ENT_C = 10 m$ $ENT_D = / m$

3) Larghezza dell'isola spartitraffico:

 $\begin{aligned} &\text{SEP}_{A} = & 15 & m \\ &\text{SEP}_{B} = & 6 & m \\ &\text{SEP}_{C} = & 8 & m \\ &\text{SEP}_{D} = & / & m \end{aligned}$

4) Flusso uscente dai rami:

Q_{uA} = 954 eph $Q_{uB} = 0$ eph $Q_{uC} = 979$ eph $Q_{uD} = /$ eph

5) Flusso transitante all'anello:

 Q_{cB} = 979 eph Q_{cC} = 0 eph Q_{cD} = / eph

6) Flusso uscente equivalente ai rami in funzione di SEP:

Q'_{uA} = 0 eph Q'_{uB} = 0 Q'_{uC} = 457 Q'_{uD} = / eph

7) Flusso di disturbo:

 $\begin{array}{cccc} Q_{dA} = & 0 & eph \\ Q_{dB} = & / & eph \\ Q_{dC} = & 305 & eph \\ Q_{dD} = & / & eph \end{array}$

CALCOLO DELLA CAPACITA' SEMPLICE DELLA ROTATORIA

8) Calcolo degli scalari $\delta_{\rm i}$ per la determinazione di K_i:

 $\delta_{A} = 1,98$ $\delta_{B} = /$ $\delta_{C} = 1,69$ $\delta_{D} = /$

Il più piccolo valore di $\delta_{\rm i}$ è :

1,69 e si verifica sul ramo :

9) Calcolo delle capacità con raggiunaimento della capacità al ramo congestionato:

K_A = 1729 eph $K_{A} = 1729$ eph $K_{B} = /$ eph $K_{C} = 1600$ eph $K_{D} = /$

capacità semplice della rotatoria

Pertanto se si incrementano i flussi di il ramo congestionato è mentre gli altri bracci hanno riserve di capacità date da:

10 Calcolo dei flussi entranti equivalenti:

 $Q'_{eA} = \begin{array}{ccc} Q'_{eA} = & 753 & eph \\ Q'_{eB} = & 0 & eph \\ Q'_{eC} = & 578 & eph \end{array}$ eph

11] Dai grafici si ricavano: 1 - i tempi medi di attesa sui bracci della rotatoria w_i (in sec) 2 - il 99° percentile della lunghezza di coda q_i

ROTATORIA 2 - IPOTESI DI PROGETTO

Matrice N

O/D	A	В	C.	D
A	0.00	0.00	1.00	0.00
В	0.50	0.00	0.50	0.00
С	0,91	0,09	0,00	0,00
D	0.00	0.00	0.00	0.00

Matrice M

O/D	Α	В	С	D
Α	0	0	979	0
В	95	0	96	0
С	954	96	0	0
D	0	Ω	Ω	· 0

C= SR 11 ovest

SR 11 est A= SR 11 est B= accesso CC

1) Larghezza dell'anello:

ANN_A = ANN_B = ANN_c = ANN_D =

2) Larghezza dei bracci:

ENT_A = 6,5 ENT_B = ENT_C = ENT_D =

3) Larghezza dell'isola spartitraffico:

 $\begin{aligned} &\text{SEP}_{A} = & 15 & m \\ &\text{SEP}_{B} = & 6 & m \\ &\text{SEP}_{C} = & 8 & m \\ &\text{SEP}_{D} = & / & m \end{aligned}$

4) Flusso uscente dai rami:

Q., = 1049 eph $Q_{uB} = 96$ eph $Q_{uC} = 1075$ eph $Q_{uD} = /$ eph

5) Flusso transitante all'anello

Q_{cB} = 979 Q_{cC} = 95 Q_{cD} = / eph

6) Flusso uscente equivalente ai rami in funzione di SEP:

Q'_{uA} = 0 eph Q'_{UB} = 58 Q'_{UC} = 502 Q'_{UD} = / eph

7) Flusso di disturbo:

 $Q_{dA} = 96$ eph $Q_{dB} = 1017$ eph $Q_{dC} = 429$ eph $Q_{dD} = 7$ eph

CALCOLO DELLA CAPACITA' SEMPLICE DELLA ROTATORIA

8) Calcolo degli scalari $\delta_{\rm i}$ per la determinazione di K;

 $\delta_{A} = 1,62$ $\delta_{B} = 1,55$ $\delta_{C} = 1,42$ $\delta_{D} = /$

Il più piccolo valore di $\delta_{\rm i}$ è :

1,42 e si verifica sul ramo :

9) Calcolo delle capacità con raggiunaimento della capacità al ramo congestionato:

 $K_{A} = 1605$ eph $K_{B} = 414$ eph $K_{C} = 1490$ eph $K_{D} = 7$ capacità semplice della rotatoria

il ramo congestionato è

Pertanto se si incrementano i flussi di 1,42 mentre gli altri bracci hanno riserve di capacità date da:

 $\begin{array}{llll} \Delta K_A = & 215 & eph \\ \Delta K_B = & 143 & eph \\ \Delta K_C = & 0 & eph \\ \Delta K_D = & / & eph \end{array}$

10 Calcolo dei flussi entranti equivalenti:

Q'_{eA} = 753 eph Q'_{eB} = 147 eph Q'_{eC} = 636 eph Q'_{eD} = / eph

 $\begin{array}{l} 11.\ \text{Dai grafici si ricavano:} \\ 1-\text{i tempi medi di attesa sui bracci della rotatoria } w_i \text{(in sec)} \\ 2-\text{il } 99^{\circ} \ \text{percentile della lunghezza di coda } q_i \end{array}$

q _A =	3	m
$q_B =$	/	m
q _c =	0	m
~ -	,	-

3924 3139

CALCOLO DELLA CAPACITA' TOTALE DELLA ROTATORIA

12| Esprimendo Q_d in funzione dei flussi entranti si ha che:

 $\begin{aligned} &Q_{dA} = \{0\text{+}0\}QeD\text{+}0QeC\\ &Q_{dB} = \{1\text{+}0\}QeA\text{+}0QeD\\ &Q_{dC} = \{0\text{+}0\}QeB\text{+}0QeA\\ &Q_{dD} = &\text{/} \end{aligned}$

Si risolve il seguente sistema di equazioni:

$$\begin{split} &Q_{oA} = \{1330-0.7Q_{oA}\}[1+0.1[ENT-3.5]] \\ &= 1729-0QeD-0QeC \\ &Q_{oB} = \{1330-0.7Q_{oB}[1+0.1[ENT-3.5]] \\ &= 0-0QeA-0QeD \\ &Q_{oC} = \{13300-0.7Q_{oC}][1+0.1[ENT-3.5]] \\ &= 2195-0QeB-0QeA \\ &Q_{eD} = \{13300-0.7Q_{oD}][1+0.1[ENT-3.5]] \\ &= 17300-0.7Q_{oD}[1+0.1[ENT-3.5]] \\ &= 17300-0.7Q_{oD}[1+0.1[ENT$$

Ottenendo la capacità totale della rotatoria pari a: mentre la capacità pratica totale risulta essere uguale a:

Calcolo eseguito per risolvere il sistema di equazioni \mathbf{Q}_{eX} I risultati che si ottengono sono riportati di seguito:

					1330	0,7
$Q_{eA} =$	1729	eph		1,3	1729	0,910
$Q_{eB} =$	0	eph		0	0	0,000
Q _{eC} =	2195	eph	-0,5	1,65	2195	1,155
$Q_{eD} =$	0	eph		0	0	0,000
				1729	0,000	0,000
				0	0,000	0,000
				2195	0,000	0,000
				0	0.000	0.000

Capacità totale della rotatoria	3924
Capacità pratica della rotatoria	3139
Flusso totale entrante nella rotatoria	1933
Grado di saturazione della rotatoria rispetto la capacità totale	49%
Grado di saturazione della rotatoria rispetto la capacità pratica	62%

	Tempi di attesa ai rami	Tempo medio attesa	LOS rotatoria HCM 2000
Ramo A	2 s		
Ramo B	/ s	2 s	A
Ramo C	2 s		

q _A =	4	m
$q_B =$	2	m
$q_c =$	6	m
an =	/	m

CALCOLO DELLA CAPACITA' TOTALE DELLA ROTATORIA

12 Esprimendo Q_d in funzione dei flussi entranti si ha che:

 $Q_{dA} = (0+0)QeD+0.09QeC$ $Q_{dB} = (1+0)QeA+0QeD$ $Q_{dC} = (0.5+0)QeB+0QeA$ $Q_{dD} = /$

Si risolve il seguente sistema di equazioni:

 $\begin{aligned} &Q_{\alpha A} = \{1330-0.7Q_{\alpha A}\}[1+0.1 \text{(ENT-3.5)}] \\ &= 1729-0 \text{QeD-}0.083 \text{QeC} \\ &Q_{\alpha B} = [1330-0.7Q_{\alpha B}][1+0.1 \text{(ENT-3.5)}] \\ &= 1729-9.1 \text{QeA-}0 \text{(ENT-3.5)}] \\ &Q_{\alpha C} = \{1330-0.7Q_{\alpha C}][1+0.1 \text{(ENT-3.5)}] \\ &= 2195-0.574 \text{QeB-}0 \text{QeA} \\ &Q_{\alpha D} = \{1330-0.7Q_{\alpha D}, [1+0.1 \text{(ENT-3.5)}]\} \\ &= f(1330-0.7Q_{\alpha D}, [1+0.1 \text{(ENT-3.5)}] \\ &= f(1330-0.7Q_{\alpha D}, [1+0.1 \text{(ENT-3.5)}] \end{aligned}$

Ottenendo la capacità totale della rotatoria pari a: mentre la capacità pratica totale risulta essere uguale a: 3887 eph 3110 eph

Calcolo eseguito per risolvere il sistema di equazioni \mathbf{Q}_{ex} I risultati che si ottengono sono riportati di seguito:

					1330	0,7
$Q_{eA} =$	1561	eph		1,3	1729	0,910
Q _{eB} =	308	eph		1,3	1729	0,910
Q _{eC} =	2018	eph	-0,14496	1,65	2195	1,155
$Q_{eD} =$	0	eph		0	0	0,000
				1729	0,000	0,083
				1729	0,910	0,000
				2195	0,574	0,000
				0	0.000	0.000

Capacità totale della rotatoria	3887
Capacità pratica della rotatoria	3110
Flusso totale entrante nella rotatoria	2220
Grado di saturazione della rotatoria rispetto la capacità totale	57%
Grado di saturazione della rotatoria rispetto la capacità pratica	71%

	Tempi di attesa ai rami	Tempo medio attesa	LOS rotatoria HCM 2000
Ramo A	3 s		
Ramo B	6 s	5 s	A
Ramo C	5 s		

ROTATORIA 2 - STATO ATTUALE

C= SR 11 ovest

Matrice N

O/D	Α	В	С	D
Α	0,00	0,00	1,00	0,00
В	0,00	0,00	0,00	0,00
С	1,00	0,00	0,00	0,00
D	0,00	0,00	0,00	0,00

Matrice M

O/D	Α	В	C	D
Α	0	0	833	0
В	0	0	0	0
С	918	0	0	0
D	Λ	Λ	Λ	Λ

A=	SR 11 est
R=	22 02222D

1) Larghezza dell'anello:

ANN_A = ANN_B = ANN_c = ANN_D =

2) Larghezza dei bracci:

 $ENT_A = 6.5 m$ $ENT_B = 6.5 m$ $ENT_C = 10 m$ $ENT_D = / m$

3) Larghezza dell'isola spartitraffico:

 $\begin{aligned} &\text{SEP}_{A} = & 15 & m \\ &\text{SEP}_{B} = & 6 & m \\ &\text{SEP}_{C} = & 8 & m \\ &\text{SEP}_{D} = & / & m \end{aligned}$

4) Flusso uscente dai rami:

Q., = 918 eph $Q_{uB} = 0$ eph $Q_{uC} = 833$ eph $Q_{uD} = /$ eph

5) Flusso transitante all'anello:

 Q_{cB} = 833 eph Q_{cC} = 0 eph Q_{cD} = / eph

6) Flusso uscente equivalente ai rami in funzione di SEP:

 $Q'_{UA} = 0$ eph $Q'_{UB} = 0$ eph $Q'_{UC} = 389$ eph Q'_{uB} = Q'_{uC} = Q'_{uD} = /

7) Flusso di disturbo:

 $Q_{dA} = 0$ eph $Q_{dB} = /$ eph $Q_{dC} = 259$ eph

CALCOLO DELLA CAPACITA' SEMPLICE DELLA ROTATORIA

8) Calcolo degli scalari $\delta_{\rm i}$ per la determinazione di K_i:

 $\delta_{A} = 2.16$ $\delta_{B} = 7$ $\delta_{C} = 1.90$ $\delta_{D} = 7$

Il più piccolo valore di $\delta_{\rm i}$ è :

1,90 e si verifica sul ramo :

9) Calcolo delle capacità con raggiunaimento della capacità al ramo congestionato:

 $K_{A} = 1729$ eph $K_{B} = 1$ eph $K_{C} = 1626$ eph $K_{D} = 1626$ eph capacità semplice della rotatoria

Pertanto se si incrementano i flussi di 1,90 mentre gli altri bracci hanno riserve di capacità date da: il ramo congestionato è

 $\Delta K_A = 146$ eph $\Delta K_A =$ $\Delta K_B =$ / eph $\Delta K_C =$ 0 eph $\Delta K_D =$ / eph

10 Calcolo dei flussi entranti equivalenti:

eph

11] Dai grafici si ricavano: 1 - i tempi medi di attesa sui bracci della rotatoria w_i (in sec) 2 - il 99° percentile della lunghezza di coda q_i

ROTATORIA 2 - IPOTESI DI PROGETTO

C= SR 11 ovest

Matrice N

O/D	Α	В	С	D
Α	0,00	0,00	1,00	0,00
В	0,50	0,00	0,50	0,00
С	0,85	0,15	0,00	0,00
D	0.00	0.00	0.00	0.00

Matrice M

O/D	Α	В	С	D
Α	0	0	833	0
В	159	0	159	0
С	918	159	0	0
	^		^	^

A= SR 11 est B= accesso CC

1) Larghezza dell'anello:

ANN_A = ANN_B = ANN_C = ANN_D =

2) Larghezza dei bracci:

ENT. = 6.5 m ENT_B = ENT_D =

3) Larghezza dell'isola spartitraffico:

SEP_A =
SEP_B = 6
SEP_C = 8

4) Flusso uscente dai rami:

Q₁₁₄ = 1077 eph $Q_{uB} = 159$ eph $Q_{uC} = 992$ eph Q_{uD} =

5) Flusso transitante all'anello

 $Q_{cB} = 833$ eph $Q_{cC} = 159$ eph $Q_{cD} = /$ eph

6) Flusso uscente equivalente ai rami in funzione di SEP:

Q'_{uA} = 0 eph Q'_{uB} = Q'_{uC} = Q'_{uD} = 95 463

7) Flusso di disturbo:

 $Q_{dA} = 159$ eph $Q_{dB} = 897$ eph $Q_{dC} = 468$ eph $Q_{dD} = /$ eph

CALCOLO DELLA CAPACITA' SEMPLICE DELLA ROTATORIA

8) Calcolo degli scalari δ_i per la determinazione di K_i :

 $\delta_{A} = 1,77$ $\delta_{B} = 1,52$ $\delta_{C} = 1,36$

Il più piccolo valore di $\delta_{\rm i}$ è :

1,36 e si verifica sul ramo :

9) Calcolo delle capacità con raggiunaimento della capacità al ramo congestionato:

K_A = 1532 eph $K_C = 1460$ eph $K_D = /$ eph

capacità semplice della rotatoria

Pertanto se si incrementano i flussi di 1,36 mentre gli altri bracci hanno riserve di capacità date da: il ramo congestionato è

 $\Delta K_A = 399$ eph $\Delta K_B = 187$ eph $\begin{array}{lll} \Delta K_{C} = & 0 & \text{eph} \\ \Delta K_{D} = & / & \text{eph} \end{array}$

10 Calcolo dei flussi entranti equivalenti:

Q'_{eA} = 641 eph Q'_{eB} = 245 eph Q'_{eC} = 653 eph Q'_{eD} = / eph

11] Dai grafici si ricavano: 1 - i tempi medi di attesa sui bracci della rotatoria w_i (in sec) 2 - il 99° percentile della lunghezza di coda q_i

q _A =	0	m
q _B =	/	m
q _c =	3	m
$q_D =$	/	m

3924 3139

sec sec $w_A = w_B = w_C =$

$q_A = q_B = q_C = q_D = q_D$

CALCOLO DELLA CAPACITA' TOTALE DELLA ROTATORIA

12| Esprimendo Q_d in funzione dei flussi entranti si ha che:

 $\begin{aligned} &Q_{dA} = \{0\text{+}0\}QeD\text{+}0QeC\\ &Q_{dB} = \{1\text{+}0\}QeA\text{+}0QeD\\ &Q_{dC} = \{0\text{+}0\}QeB\text{+}0QeA\\ &Q_{dD} = &\text{/} \end{aligned}$

Si risolve il seguente sistema di equazioni:

$$\begin{split} &Q_{oA} = \{1330-0.7Q_{oA}\}[1+0.1[ENT-3.5]] \\ &= 1729-0QeD-0QeC \\ &Q_{oB} = \{1330-0.7Q_{oB}[1+0.1[ENT-3.5]] \\ &= 0-0QeA-0QeD \\ &Q_{oC} = \{13300-0.7Q_{oC}][1+0.1[ENT-3.5]] \\ &= 2195-0QeB-0QeA \\ &Q_{eD} = \{13300-0.7Q_{oD}][1+0.1[ENT-3.5]] \\ &= 17300-0.7Q_{oD}[1+0.1[ENT-3.5]] \\ &= 17300-0.7Q_{oD}[1+0.1[ENT$$

Ottenendo la capacità totale della rotatoria pari a:
mentre la capacità pratica totale risulta essere uguale

Calcolo eseguito per risolvere il sistema di equazioni \mathbf{Q}_{eX} I risultati che si ottengono sono riportati di seguito:

					1330	0,7
$Q_{eA} =$	1729	eph		1,3	1729	0,910
$Q_{eB} =$	0	eph		0	0	0,000
Q _{eC} =	2195	eph	-0,5	1,65	2195	1,155
$Q_{eD} =$	0	eph		0	0	0,000
				1729	0,000	0,000
				0	0,000	0,000
				2195	0,000	0,000
				0	0.000	0.000

Capacità totale della rotatoria	3924
Capacità pratica della rotatoria	3139
Flusso totale entrante nella rotatoria	1751
Grado di saturazione della rotatoria rispetto la capacità totale	45%
Grado di saturazione della rotatoria rispetto la capacità pratica	56%

	Tempi di attesa ai rami	Tempo medio attesa	LOS rotatoria HCM 2000
Ramo A	2 s		
Ramo B	/ s	2 s	A
Ramo C	2 s		

CALCOLO DELLA CAPACITA' TOTALE DELLA ROTATORIA

12| Esprimendo Q_d in funzione dei flussi entranti si ha che:

Si risolve il seguente sistema di equazioni:

$$\begin{split} G_{o,h} &= \{1330-0.7Q_{o,h}\}[1+0.1[ENT-3.5]] \\ &= 1729-0Qe[D-0.134QeC\\ Q_{ofb} &= [1330-0.7Q_{o,d}][1+0.1[ENT-3.5]] \\ &= 1729-9.1[0-A.OQeC\\ Q_{oC} &= \{1330-0.7Q_{o,d}][1+0.1[ENT-3.5]] \\ &= 2195-0.578QeB-0QeA\\ Q_{e,0} &= \{1330-0.7Q_{o,d})[1+0.1[ENT-3.5]]\\ &= f(1330-0.7Q_{o,d})[1+0.1[ENT-3.5]] \\ &= f(1330-0.7Q_{o,d})[1+0.1[ENT-3.5]] \end{split}$$

Ottenendo la capacità totale della rotatoria pari a: mentre la capacità pratica totale risulta essere uguale a: 3826 3061

Calcolo eseguito per risolvere il sistema di equazioni \mathbf{Q}_{ex} I risultati che si ottengono sono riportati di seguito:

					1330	0,7
$Q_{eA} =$	1465	eph		1,3	1729	0,910
$Q_{eB} =$	396	eph		1,3	1729	0,910
Q _{eC} =	1965	eph	0,902554	1,65	5 2195	1,155
$Q_{eD} =$	0	eph		0	0	0,000
				172	9 0,000	0,134
				172	9 0,910	0,000
				219	5 0,578	0,000
				0	0.000	0,000

Capacità totale della rotatoria	3826
Capacità pratica della rotatoria	3061
Flusso totale entrante nella rotatoria	2228
Grado di saturazione della rotatoria rispetto la capacità totale	58%
Grado di saturazione della rotatoria rispetto la capacità pratica	73%

	Tempi di attesa ai rami	Tempo medio attesa	LOS rotatoria HCM 2000	
Ramo A	5 s			
Ramo B	8 s	7 s	A	
Ramo C	7 s			

ROTATORIA 3 - STATO ATTUALE

C= SR 11 est

Matrice N

O/D	Α	В	С	D
Α	0,00	0,34	0,66	0,00
В	0,44	0,00	0,56	0,00
С	0,68	0,32	0,00	0,00
D	0.00	0.00	0.00	0.00

Matrice M

O/D	Α	В	С	D
Α	0	310	602	0
В	313	0	396	0
С	656	307	0	0
D	Λ	Λ	Λ	Λ

A= SR 11 ovest B= via Sottopasso Olmo

1) Larghezza dell'anello:

ANN _A =	8	m
$ANN_B =$	8	m
$ANN_C =$	8	m
ANINI -	/	m

2) Larghezza dei bracci:

```
ENT<sub>A</sub> = 7,5 m
ENT_{B} = 6 m
ENT_{C} = 7 m
ENT_{D} = / m
```

3) Larghezza dell'isola spartitraffico:

$SEP_A =$	10,5	m
$SEP_B =$	10	m
$SEP_C =$	10	m
CED -	,	m

4) Flusso uscente dai rami:

Q _{uA} =	969	eph
⊋ _{uB} =	617	eph
Q _{uC} =	998	eph
2 - 6	/	enh

5) Flusso transitante all'anello:

Q _{cA} =	307	eph
$Q_{cB} =$	602	eph
$Q_{cC} =$	313	eph
0 -	,	onh

6) Flusso uscente equivalente ai rami in funzione di SEP:

Q'uA =	291	eph
Q' _{uB} =	206	eph
Q' _{uC} =	333	eph
Q' _{uD} =	/	eph

7) Flusso di disturbo:

$Q_{dA} =$	637	eph
$Q_{dB} =$	851	eph
Q _{dC} =	602	eph
$Q_{dD} =$	/	eph

CALCOLO DELLA CAPACITA' SEMPLICE DELLA ROTATORIA

8) Calcolo degli scalari δ_i per la determinazione di K_i :

$$\delta_{A} = 1.33$$
 $\delta_{B} = 1.23$
 $\delta_{C} = 1.22$
 $\delta_{D} = /$

Il più piccolo valore di $\delta_{\rm i}$ è :

1,22 e si verifica sul ramo :

più piccolo valore al
$$\delta_1$$
 e : 1,22 e si verifica sui ramo :

9) Calcolo delle capacità con raggiunaimento della capacità al ramo congestionato:

Pertanto se si incrementano i flussi di 1.22 il ramo congestionato è mentre gli altri bracci hanno riserve di capacità date da:

10 Calcolo dei flussi entranti equivalenti:

$Q'_{eA} =$	666	eph
Q' _{eB} =	380	eph
Q' _{eC} =	730	eph
0' -	/	onh

ROTATORIA 3 - IPOTESI DI PROGETTO

Matrice N

O/D	Α	В	С	D
Α	0,00	0,35	0,65	0,00
В	0,47	0,00	0,53	0,00
С	0,70	0,30	0,00	0,00
D	0.00	0.00	0.00	0.00

Matrice M

O/D	Α	В	С	D
Α	0	348	659	0
В	351	0	396	0
C	713	307	0	0
D	0	0	0	0

C= SR 11 est

A=	SR II ovest	C=
B=	via Sottopasso Olmo	

1) Larahezza dell'anello:

ANN _A =	8	m
ANN _B =	8	m
$ANN_C =$	8	m
ANN _D =	/	m

2) Larghezza dei bracci:

$ENT_A =$	7,5	m
$ENT_B =$	6	m
$ENT_C =$	7	m
$ENT_D =$	/	m

3) Larghezza dell'isola spartitraffico:

$SEP_A =$	10,5	m
$SEP_B =$	10	m
SEP _C =	10	m
$SEP_D =$	/	m

4) Flusso uscente dai rami:

Q _{uA} =	1064	eph
$Q_{uB} =$	655	eph
$Q_{UC} =$	1055	eph
0.0=	/	enh

5) Flusso transitante all'anello:

Q _{cA} =	307	eph
$Q_{cB} =$	659	eph
$Q_{cC} =$	351	eph
O =	/	anh

6) Flusso uscente equivalente ai rami in funzione di SEP:

Q'uA =	319	eph
Q' _{uB} =	218	eph
Q' _{uC} =	352	eph
01	,	

7) Flusso di disturbo:

Q _{dA} =	520	epl
Q _{dB} =	805	epl
Q _{dC} =	585	epl

CALCOLO DELLA CAPACITA' SEMPLICE DELLA ROTATORIA

8) Calcolo degli scalari $\delta_{\rm i}$ per la determinazione di ${\rm K_i}$:

$$\delta_{A} = 1,23$$
 $\delta_{B} = 1,15$
 $\delta_{C} = 1,14$

Il più piccolo valore di $\delta_{\rm i}$ è :

9) Calcolo delle capacità con raggiunaimento della capacità al ramo congestionato:

**	1281	eph	
$K_B =$	860	eph	
K _C =	1165	eph	capacità semplice della rotatoria
$K_D =$	/	eph	

Pertanto se si incrementano i flussi di 1,14 il ramo congestionato è mentre gli altri bracci hanno riserve di capacità date da:

$\Delta K_A =$	133	eph
$\Delta K_B =$	8	eph
$\Delta K_C =$	2	eph
$\Delta K_D =$	/	eph

10 Calcolo dei flussi entranti equivalenti:

Q'eA =	719	eph
Q' _{e8} =	598	eph
Q' _{eC} =	756	eph
$Q'_{eD} =$	/	eph

 $\begin{array}{l} 11.\ \text{Dai grafici si ricavano:} \\ 1 - \text{i tempi medi di attesa sui bracci della rotatoria } w_i \text{(in sec)} \\ 2 - \text{il } 99^\circ \text{ percentile della lunghezza di coda } q_i \end{array}$

^{11]} Dai grafici si ricavano: 1 - i tempi medi di attesa sui bracci della rotatoria w_i (in sec) 2 - il 99° percentile della lunghezza di coda q_i

$W_A =$	10	sec
w _B =	19	sec
$w_c =$	15	sec

q _A =	7	m
q _B =	9	m
q _c =	10	m
a- =	/	m

3701 2961

CALCOLO DELLA CAPACITA' TOTALE DELLA ROTATORIA

12| Esprimendo Q_d in funzione dei flussi entranti si ha che:

Si risolve il seguente sistema di equazioni:

$$\begin{split} G_{oA} &= \{1330\text{-}0.7Q_{cb}\}[1\text{+}0.1\{\text{ENT-}3.5]\} \\ &= 1862\text{-}0\text{QeD-}0.312\text{QeC} \\ Q_{oB} &= \{1330\text{-}0.7Q_{cd}\}[1\text{+}0.1\{\text{ENT-}3.5]\} \\ &= 1663\text{-}0.578\text{QeA-}0\text{QeD} \\ G_{eC} &= \{1330\text{-}0.7Q_{cd}\}[1\text{-}0.1\{\text{ENT-}3.5]\} \\ &= 1796\text{-}0.417\text{QeB-}0\text{QeA} \\ Q_{oD} &= \{1330\text{-}0.7Q_{cD}\}[1\text{-}0.1\{\text{ENT-}3.5]\} \\ &= f(1330\text{-}0.7Q_{cD})[1\text{-}0.1\{\text{ENT-}3.5]] \\ &= f(1330\text{-}0.7Q_{cD})[1\text{-}0.1(\text{ENT-}3.5]] \\ &= f(1330\text{-}0.7Q_{cD})[1\text{-}0.1(\text{ENT-}3.5]] \\ &= f(1330\text{-}0.7Q_{cD})[1\text{-}0.1(\text{ENT-}3.5]] \\ &= f(1330\text{-}0.7Q_{cD})[1\text{-}0.1(\text{ENT-}3.5]] \\$$

Ottenendo la capacità totale della rotatoria pari a:	
mentre la capacità pratica totale risulta essere uguale a:	

Calcolo eseguito per risolvere il sistema di equazioni \mathbf{Q}_{eX} I risultati che si ottengono sono riportati di seguito:

					1330	0,7
$Q_{eA} =$	1411	eph		1,4	1862	0,980
Q _{eB} =	847	eph		1,25	1663	0,875
Q _{eC} =	1442	eph	0,036683	1,35	1796	0,945
$Q_{eD} =$	0	eph		0	0	0,000
				1862	0,000	0,312
				1663	0,578	0,000
				1796	0,417	0,000
				0	0,000	0,000

Capacità totale della rotatoria	3701
Capacità pratica della rotatoria	2961
Flusso totale entrante nella rotatoria	2584
Grado di saturazione della rotatoria rispetto la capacità totale	70%
Grado di saturazione della rotatoria rispetto la capacità pratica	87%

	Tempi di attesa ai rami	Tempo medio attesa	LOS rotatoria HCM 2000
Ramo A	10 s		
Ramo B	19 s	15 s	В
Ramo C	15 s		

CALCOLO DELLA CAPACITA' TOTALE DELLA ROTATORIA

12 Esprimendo Q_d in funzione dei flussi entranti si ha che:

Si risolve il seguente sistema di equazioni:

$$\begin{split} &Q_{eA} = \{1330-0.7Q_{eA}\}[1+0.1[ENT-3.5]]\\ &= 1862-0QeeD-0.295QeC\\ &Q_{eB} = \{1330-0.7Q_{eB}][1+0.1[ENT-3.5]]\\ &= 1663-0.573QeA-0QeD\\ &Q_{eC} = \{1330-0.7Q_{eC}][1+0.1[ENT-3.5]]\\ &= 1796-0.444QeB-0QeA\\ &Q_{eD} = \{1330-0.7Q_{eD}][1+0.1[ENT-3.5]]\\ &= f(1330-0.7Q_{eD})[1+0.1[ENT-3.5]]\\ &= f(1330-0.7Q_{eD})[1+0.1[ENT-3.5]] \end{split}$$

Ottenendo la capacità totale della rotatoria pari a: mentre la capacità pratica totale risulta essere uguale a: 3703 eph 2962 eph

Calcolo eseguito per risolvere il sistema di equazioni \mathbf{Q}_{eX} I risultati che si ottengono sono riportati di seguito:

					1330	0,7
$Q_{eA} =$	1442	eph		1,4	1862	0,980
$Q_{eB} =$	837	eph		1,25	1663	0,875
Q _{eC} =	1424	eph	-0,0697	1,35	1796	0,945
$Q_{eD} =$	0	eph		0	0	0,000
				1862	0,000	0,295
				1663	0,573	0,000
				1796	0,444	0,000
				0	0.000	0.000

Capacità totale della rotatoria	3703
Capacità pratica della rotatoria	2962
Flusso totale entrante nella rotatoria	2774
Grado di saturazione della rotatoria rispetto la capacità totale	75%
Grado di saturazione della rotatoria rispetto la capacità pratica	94%

	Tempi di attesa ai rami	Tempo medio attesa	LOS rotatoria HCM 2000
Ramo A	12 s		
Ramo B	20 s	17 s	С
Ramo C	18 s		

ROTATORIA 3 - STATO ATTUALE

Matrice N

O/D	Α	В	С	D
Α	0,00	0,33	0,67	0,00
В	0,52	0,00	0,48	0,00
С	0,68	0,32	0,00	0,00
D	0.00	0.00	0.00	0.00

Matrice M

O/D	Α	В	С	D
Α	0	306	608	0
В	299	0	281	0
С	604	289	0	0
D	Λ	Λ	Λ	Λ

C= SR 11 est

A= SR 11 ovest B= via Sottopasso Olmo

1) Larghezza dell'anello:

ANN_A = ANN_B = ANN_c = ANN_D =

2) Larghezza dei bracci:

ENT_A = 7,5 m $ENT_{B} = 6 m$ $ENT_{C} = 7 m$ $ENT_{D} = / m$

3) Larghezza dell'isola spartitraffico:

 $\begin{aligned} &\text{SEP}_{A} = & 10.5 & m \\ &\text{SEP}_{B} = & 10 & m \\ &\text{SEP}_{C} = & 10 & m \\ &\text{SEP}_{D} = & / & m \end{aligned}$

4) Flusso uscente dai rami:

Q₁₁₄ = 903 eph $Q_{uB} = 595$ eph $Q_{uC} = 889$ eph $Q_{uD} = 7$ eph

5) Flusso transitante all'anello:

Q_{cB} = 608 Q_{cC} = 299 Q_{cD} = / eph

6) Flusso uscente equivalente ai rami in funzione di SEP:

Q'_{uA} = 271 eph Q'_{uB} = 198 Q'_{uC} = 296 Q'_{uD} = / eph eph

7) Flusso di disturbo:

 $Q_{dA} = 637$ eph $Q_{dB} = 851$ eph $Q_{dC} = 602$ eph $Q_{dD} = /$ eph

CALCOLO DELLA CAPACITA' SEMPLICE DELLA ROTATORIA

8) Calcolo degli scalari $\delta_{\rm i}$ per la determinazione di K_i:

 $\delta_{B} = 1,24$ $\delta_{C} = 1,30$ $\delta_{D} = /$

Il più piccolo valore di $\delta_{\rm i}$ è : 1,24 e si verifica sul ramo :

9) Calcolo delle capacità con raggiunaimento della capacità al ramo congestionato:

 $K_{A} = 1088$ eph $K_{B} = 740$ eph $K_{C} = 1090$ eph $K_{D} = 7$ capacità semplice della rotatoria Pertanto se si incrementano i flussi di 1,24 mentre gli altri bracci hanno riserve di capacità date da: il ramo congestionato è

 $\Delta K_A = 0$ eph $\Delta K_B = 20$ eph $\Delta K_C = 0$ eph $\Delta K_D = /$ eph

10 Calcolo dei flussi entranti equivalenti:

Q'_{eA} = 666 eph Q'_{eB} = 380 Q'_{eC} = 730 Q'_{eD} = / eph

11] Dai grafici si ricavano: 1 - i tempi medi di attesa sui bracci della rotatoria w_i (in sec) 2 - il 99° percentile della lunghezza di coda q_i

ROTATORIA 3 - IPOTESI DI PROGETTO

Matrice N

O/D	Α	В	С	D
Α	0,00	0,34	0,66	0,00
В	0,56	0,00	0,44	0,00
С	0,71	0,29	0,00	0,00
D	0.00	0.00	0.00	0.00

Matrice M

O/D	Α	В	C	D
Α	0	370	703	0
В	363	0	281	0
С	699	289	0	0
D	Ο	0	Ω	0

A= SR 11 ovest B= via Sottopasso Olmo C= SR 11 est

1) Larghezza dell'anello:

ANN_A = ANN_B = ANN_c = ANN_D =

2) Larghezza dei bracci:

ENT_A = 7,5 $ENT_{B} = 6$ $ENT_{C} = 7$ $ENT_{D} = /$

3) Larghezza dell'isola spartitraffico:

 $\begin{aligned} &\text{SEP}_{\text{A}} = & 10,5 & \text{m} \\ &\text{SEP}_{\text{B}} = & 10 & \text{m} \\ &\text{SEP}_{\text{C}} = & 10 & \text{m} \\ &\text{SEP}_{\text{D}} = & / & \text{m} \end{aligned}$

4) Flusso uscente dai rami:

Q₁₁₄ = 1062 eph $Q_{uB} = 659$ eph $Q_{uC} = 984$ eph $Q_{uD} = 7$ eph

5) Flusso transitante all'anello

Q_{cB} = 703 Q_{cC} = 363 Q_{cD} = / eph

6) Flusso uscente equivalente ai rami in funzione di SEP:

Q'.... = 319 eph Q'_{uB} = 220 Q'_{uC} = 328 Q'_{uD} = / eph eph

7) Flusso di disturbo:

 $Q_{dA} = 501$ eph $Q_{dB} = 849$ eph $Q_{dC} = 582$ eph $Q_{dD} = /$ eph

CALCOLO DELLA CAPACITA' SEMPLICE DELLA ROTATORIA

8) Calcolo degli scalari $\delta_{\rm i}$ per la determinazione di K_i:

δ_A = 1,19 $\delta_{A} = 1,17$ $\delta_{B} = 1,21$ $\delta_{C} = 1,17$ $\delta_{D} = /$

Il più piccolo valore di $\delta_{\rm i}$ è : 1,17 e si verifica sul ramo :

9) Calcolo delle capacità con raggiunaimento della capacità al ramo congestionato:

 $K_{A} = 1287$ eph $K_{B} = 793$ eph $K_{C} = 1152$ eph $K_{D} = 7$ eph K. = 1287 enh

capacità semplice della rotatoria

Pertanto se si incrementano i flussi di 1,17 mentre gli altri bracci hanno riserve di capacità date da: il ramo congestionato è

 $\Delta K_A = 32$ eph $\Delta K_B = 39$ eph $\Delta K_C = 0$ $\Delta K_D = /$ eph

10 Calcolo dei flussi entranti equivalenti:

Q'_{eA} = 766 eph Q'_{eB} = Q'_{eC} = Q'_{eD} = 515 732 eph

 $\begin{array}{l} 11/\operatorname{Dai}\ grafici\ si\ ricavano: \\ 1-i\ tempi\ medi\ di\ attesa\ sui\ bracci\ della\ rotatoria\ w_i (in\ sec) \\ 2-il\ 99^{\circ}\ percentile\ della\ lunghezza\ di\ coda\ q_i \end{array}$

$W_A =$	9	sec	q _A =	6	m
$w_B =$	19	sec	q _B =	9	m
w _c =	12	sec	q _C =	8	m
	,		_	,	

12 19 15 sec sec 10 9 11 $w_A = w_B = w_C = w_D =$ $q_A =$ $q_B =$ $q_C =$ $q_D =$

m m m

CALCOLO DELLA CAPACITA' TOTALE DELLA ROTATORIA

12| Esprimendo Q_d in funzione dei flussi entranti si ha che:

Si risolve il seguente sistema di equazioni:

$$\begin{split} &Q_{oA} = \{1330-0.7Q_{oA}\}[1+0.1[ENT-3.5]] \\ &= 1862-0QeD-0.317QeC \\ &Q_{oB} = \{1330-0.7Q_{od}][1+0.1[ENT-3.5]] \\ &= 1663-0.582QeA-0QeD \\ &Q_{oC} = \{13300-0.7Q_{od}][1+0.1[ENT-3.5]] \\ &= 1796-0.487QeB-0QeA \\ &Q_{oD} = \{1330-0.7Q_{oD}][1+0.1[ENT-3.5]] \\ &= f(1300-0.7Q_{oD})[1+0.1[ENT-3.5]] \\ &= f(1300-0.7Q_{oD})[1+0.1[ENT-3.5$$

Ottenendo la capacità totale della rotatoria pari a: mentre la capacità pratica totale risulta essere uguale a: 3555 2844

Calcolo eseguito per risolvere il sistema di equazioni \mathbf{Q}_{eX} I risultati che si ottengono sono riportati di seguito:

$Q_{eA} =$	1455	eph		1,4	1862	0,980
$Q_{eB} =$	816	eph		1,25	1663	0,875
$Q_{eC} =$	1285	eph	0	1,35	1796	0,945
$Q_{eD} =$	0	eph		0	0	0,000
				1862	0,000	0,317
				1663	0,582	0,000
				1796	0,487	0,000
				Ö	0.000	0.000

1330

0,7

Capacità totale della rotatoria	3555
Capacità pratica della rotatoria	2844
Flusso totale entrante nella rotatoria	2387
Grado di saturazione della rotatoria rispetto la capacità totale	67%
Grado di saturazione della rotatoria rispetto la capacità pratica	84%

	Tempi di attesa ai rami	Tempo medio attesa	LOS rotatoria HCM 2000
Ramo A	9 s		
Ramo B	19 s	13 s	В
Ramo C	12 s		

CALCOLO DELLA CAPACITA' TOTALE DELLA ROTATORIA

12| Esprimendo Q_d in funzione dei flussi entranti si ha che:

Si risolve il seguente sistema di equazioni:

$$\begin{split} &Q_{eA} = (1330-0, 7Q_{eA})[1+0.1 (ENT-3.5)] \\ &= 1862-0 QeD-0.287 GeC \\ &Q_{eB} = [1330-0, 7Q_{eB}][1+0.1 (ENT-3.5)] \\ &= 1.663-0.573 QeA-0 QeD \\ &Q_{eC} = (1330-0, 7Q_{eC})[1+0.1 (ENT-3.5)] \\ &= 1796-0.533 QeB-0 QeA \\ &Q_{eD} = (1330-0, 7Q_{eD})[1+0.1 (ENT-3.5)] \\ &= f(1330-0, 7Q_{eD})[1+0.1 (ENT-3.5)] \\ &= f(1330-0, 7Q_{eD})[1+0.1 (ENT-3.5)] \end{split}$$

Ottenendo la capacità totale della rotatoria pari a: mentre la capacità pratica totale risulta essere uguale a: 3650 2920

Calcolo eseguito per risolvere il sistema di equazioni \mathbf{Q}_{eX} I risultati che si ottengono sono riportati di seguito:

					1330	0,7
$Q_{eA} =$	1472	eph		1,4	1862	0,980
$Q_{eB} =$	818	eph		1,25	1663	0,875
$Q_{eC} =$	1359	eph	0,572881	1,35	1796	0,945
$Q_{eD} =$	0	eph		0	0	0,000
				1862	0,000	0,287
				1663	0,573	0,000
				1796	0,533	0,000
				0	0.000	0.000

Capacità totale della rotatoria	3650	
Capacità pratica della rotatoria	2920	
Flusso totale entrante nella rotatoria	2705	
Grado di saturazione della rotatoria rispetto la capacità totale	74%	
Grado di saturazione della rotatoria rispetto la capacità pratica	93%	

	Tempi di attesa ai rami	Tempo medio attesa	LOS rotatoria HCM 2000	
Ramo A	12 s		В	
Ramo B	19 s	15 s		
Ramo C	15 s			