Committente:

Equipe srl Servizi Ambientali

Professionista incaricato:

ESSEAMBIENTE S.R.L. consulenza ambiente e sicurezza

Via Kepiero n.º 9/A - 36078 - VALDAGNO (VI) C F 04271550248 - info@esseambiente it esseambientesri@pec.it - Tel, 0445 407662

COLLAUDO FUNZIONALE

LOCALIZZAZIONE

Via Vicenza n.11 San Vito di Leguzzano 36030

DISCIPLINA

ART. 25, COMMA 8, DELLA L.R. N. 3/2000 E SS.MM.II.

CODICE ELABORATO	OGGETTO ELABORATO		
A10	ALLEGATO 10 ANALISI ODORIGENA E PROCEDURE OPERATIVE	Rev.	00

I: CONSEGNA: I: Campagna analisi emissioni odorigene - Prescrizione n. 4 "Odori" del Parere del Comitato Tecnico VIA n. 09/2022, parte integrante della Determina n. 1640 del 22/11/2022 - EQUIPE SRL -Riscontro a Vostra comunicazione pec Prot. GE2025/001693

Da Cristina Zanco < cristina.zanco@equipesrl.it>

Data mar 06/05/2025 14:43

A Domenico Guzzonato <domenico.guzzonato@equipesrl.it>

2 allegati (4 MB)

postacert.eml (4,14 MB); daticert.xml;

ciao

Cordiali saluti

Cristina Zanco

Cell: +39 340 5274536

Email: cristina.zanco@equipesrl.it

PEC: equipesrlvicenza@legalmail.it

Tel: <u>0444 502034</u> <u>Via L. L. Zamenhof, 709</u> <u>36100 Vicenza</u>

www.equipesrl.it

Da: Posta Certificata Legalmail <posta-certificata@legalmail.it>

Inviato: martedì 6 maggio 2025 14:28 **A:** equipesrlvicenza@legalmail.it

Oggetto: CONSEGNA: I: Campagna analisi emissioni odorigene - Prescrizione n. 4 "Odori" del Parere del Comitato Tecnico VIA n. 09/2022, parte integrante della Determina n. 1640 del 22/11/2022 - EQUIPE SRL -Riscontro a Vostra comunicazione

pec Prot. GE2025/0016930 d

Ricevuta di avvenuta consegna

Il giorno 06/05/2025 alle ore 14:27:49 (+0200) il messaggio

"I: Campagna analisi emissioni odorigene - Prescrizione n. 4 "Odori" del Parere del Comitato Tecnico VIA n. 09/2022, parte integrante della Determina n. 1640 del 22/11/2022 - EQUIPE SRL -Riscontro a Vostra comunicazione pec Prot. GE2025/0016930 del 11.04.2" proveniente da "equipesrlvicenza@legalmail.it" ed indirizzato a "provincia.vicenza@cert.ip-veneto.net"

è stato consegnato nella casella di destinazione

Identificativo messaggio: 3AC6F1B4.00D8C7E1.A59103F8.07B8CAB7.posta-certificata@legalmail.it

Questa ricevuta, per Sua garanzia, è firmata digitalmente e la preghiamo di conservarla come attestato della consegna del messaggio alla casella destinataria.

Delivery receipt

On 06/05/2025 at 14:27:49 (+0200) the message

"I: Campagna analisi emissioni odorigene - Prescrizione n. 4 "Odori" del Parere del Comitato Tecnico VIA n. 09/2022, parte integrante della Determina n. 1640 del 22/11/2022 - EQUIPE SRL -Riscontro a Vostra comunicazione pec Prot. GE2025/0016930 del 11.04.2" sent by "equipesrlvicenza@legalmail.it" and addressed to: "provincia.vicenza@cert.ip-veneto.net" was delivered by the certified email system.

Message ID: 3AC6F1B4.00D8C7E1.A59103F8.07B8CAB7.posta-certificata@legalmail.it

As a guarantee to you, this receipt is digitally signed. Please keep it as a certificate of delivery of the message.

Spettabile
AMMINISTRAZIONE PROVINCIALE DI VICENZA
AREA TECNICA
Servizio Rifiuti, VIA e VAS
Contrà Gazzolle, 1

Vicenza, 6 maggio 2025

36100 - VICENZA

Comunicazione pec: provincia.vicenza@cert.ipveneto.net

Oggetto: Campagna analisi emissioni odorigene – Prescrizione n. 4 "Odori" del Parere del Comitato Tecnico VIA n. 09/2022, parte integrante della Determina n. 1640 del 22/11/2022

Ditta proponente – EQUIPE S.R.L.

Attività: Impianto di stoccaggio e trattamento di rifiuti speciali. Localizzazione – Comune di San Vito di Leguzzano, via Vicenza n. 11.

Riscontro a Vostra comunicazione pec Prot. GE2025/0016930 del 11.04.2025 INVIO DOCUMENTAZIONE

Con la presente, si invia la documentazione relativa all'oggetto.

In particolare:

- Analisi emissioni odorigene, valutazione numerica della dispersione e procedure per la gestione delle emissioni diffuse.
- Allegato 1 misura concentrazione odore e analisi chimiche.
- Allegato 2 valutazione numerica della dispersione.

Si porgono distinti saluti

EQUIPE SRL

Il Legale Rappresentante

Cristina ZANCO

anide'u ama

Equipe srl

Via Vicenza, 11

San Vito di Leguzzano (VI)

Analisi emissioni odorigene, valutazione numerica della dispersione e procedure per la gestione delle emissioni diffuse

Riferimento:

Determina nº 1640 del 22/11/2022 della Provincia di Vicenza

San Vito di Leguzzano, 05/05/2025

Il tecnico incaricato Ing. Nicola Gemo

Firmato digitalmente da: GEMO NICOLA

Firmato il 05/05/2025 18:52 Seriale Certificato: 2345595

Valido dal 06/04/2023 al 06/04/2026

InfoCamere Qualified Electronic Signature CA

consulenza ambiente e sicurezza

Sommario

Premessa	3
Analisi ofattometrica	3
Valutazione numerica della dispersione	4
Procedure di gestione	4

Allegati

Allegato 1 - Misura concentrazione odore e analisi chimiche

Allegato 2 - Valutazione numerica della dispersione

Premessa

Con Determina n° 1640 del 22/11/2022 della Provincia di Vicenza veniva rilasciato alla ditta Equipe srl Provvedimento di Valutazione d'Impatto Ambientale e contestuale Approvazione Progetto ai sensi dell'art. 27 bis del D.Lgs. 152/2006.

Con la stessa venivano previste una serie di prescrizioni; in particolare la prescrizione n.4 prevede:

4. Odori

- a) Effettuare un'indagine olfattometrica da eseguire nel corso dell'esercizio provvisorio, sugli specifici cumuli delle diverse tipologie di rifiuto, con un monitoraggio delle sostanze odorigene al confine dell'area di stabilimento, con almeno due postazioni di prelievo da individuarsi anche in considerazione delle condizioni meteorologiche locali; la proposta dei punti di monitoraggio dovrà essere preventivamente comunicata a Provincia ed ARPAV.
- b) Per i fanghi con potenziale carica odorigena per i quali, non ostante la richiesta di integrazioni, non è stata fornita la caratterizzazione, si dovrà procedere in merito prima della loro accettazione in impianto, con definizione di procedure e/o presidi che consentano la gestione e/o d il contenimento di eventuali emissioni diffuse.

Considerando che:

- In data 19/12/2024 la ditta Equipe srl ha inviato una prima proposta di campagna analitica emissioni odorigene
- In data 10/01/2025 la Provincia di Vicenza ha richiesto integrazioni rispetto alla proposta inviata
- In data 14/03/2025 la ditta Equipe srl ha inviato la relativa documentazione integrativa
- In data 11/04/2025 la la Provincia di Vicenza ha richiesto che la proposta inviata fosse ulteriormente integrata

con la presente si invia:

- Analisi ofattometrica, eseguita nel corso dell'esercizio provvisorio, sugli specifici cumuli delle diverse tipologie di rifiuto, con un monitoraggio delle sostanze odorigene
- Valutazione numerica della dispersione, basata sui dati di cui al precedente punto
- Definizione di procedure che consentono la gestione di eventuali emissioni diffuse

Analisi ofattometrica

La ditta ha eseguito misure di concentrazioni di odore e relative analisi chimiche, come da richiesta degli enti. Si include in Allegato 1 la relativa relazione tecnica elaborata dal laboratorio incaricato, unitamente ai rapporti di prova e alle analisi chimiche svolte.

Sono state analizzate diverse tipologie di fango, accuratamente scelte dalla ditta Equipe srl per le loro tipiche caratteristiche odorigene: tra le varie tipologie di fanghi trattati dalla ditta, si tratta di quelle che presentano la potenziale carica odorigena più alta. Sono stati inoltre analizzati gli sfiati dei silos di stoccaggio del rifiuto EER 20.03.04.

Lo studio conclude che:

- 1- l'insieme delle sorgenti risulta significativo ai fini della valutazione delle emissioni odorigene
- 2- lo <u>sfiato</u> del silo di stoccaggio del rifiuto EER 20.03.04 è ritenuto essere una <u>sorgente non</u> significativa

3- relativamente ai composti chimici potenzialmente "traccianti" dell'odore, sul campione prelevato sui fanghi non è stato individuato alcun composto come "tracciante", mentre sul campione prelevato allo sfiato sono stati individuati 3 composti: il metilmercaptano (che riveste un ruolo predominante), il dimetildisolfuro e il dimetilsolfuro

Valutazione numerica della dispersione

Sulla base delle analisi di cui al precedente paragrafo, si è proceduto alla valutazione numerica della dispersione, che si riporta in Allegato 2.

La valutazione assume:

- i fanghi vengono stoccati nelle aree 15, 22, 25 e 29 della planimetria inviata in sede di fine lavori ed avvio esercizio in regime provvisorio; tali aree si considerano alla loro massima capacità di stoccaggio
- emissione di odore (C_{od}): 2000 ou_E/m³ (in quanto questa è risultata essere la più alta concentrazione misurata di emissione odorigena), corrispondente ad un flusso specifico di odore (SOER) pari a 7.09 ou_E/m²/s
- esclusione dello sfiato dei serbatoi di fanghi liquidi da fosse settiche, in quanto la durata dell'emissione risulta inferiore alla soglia di 52 ore stabilita dal D.D. 309/23 del M.A.S.E.
- punti emissivi dell'impianto costituiti esclusivamente da una serie di finestrature poste sul tetto

Con tali assunzioni la simulazione numerica della dispersione conclude che presso tutti i recettori vengono rispettate le soglie definite nelle linee di indirizzo del M.A.S.E.

È stata anche eseguita una simulazione "a ritroso", al fine di stabilire quale sia la portata specifica d'odore massima misurabile alle sorgenti che garantisce il rispetto dei limiti ai recettori; il massimo flusso specifico di odore che permette di non superare le soglie definite nelle linee di indirizzo del M.A.S.E. è risultato pari a 7.91 ou_E/m²/s, che corrisponde ad una concentrazione massima di odore (C_{od}) pari a 2232.759 ou_E/m³.

Procedure di gestione

Sulla base delle conclusioni tratte dalle misurazioni eseguite e dalla relativa valutazione numerica della dispersione, al fine della gestione e del contenimento di eventuali emissioni diffuse, si propongono le seguenti procedure operative:

- 1- <u>la ditta dovrà operare a portoni chiusi</u>; tale procedura deriva direttamente dalla valutazione numerica della dispersione degli odori, che assume punti emissivi costituiti esclusivamente dalle finestrature poste sul tetto.
 - I portoni potranno essere aperti esclusivamente per l'ingresso e l'uscita dei mezzi in arrivo/partenza. Dallo "Studio di impatto viabilistico" allegato alla documentazione inviata in sede di Valutazione di Impatto Ambientale e Approvazione Progetto (inviata via pec in data 20/07/2022), viene riportato:

L'orario lavorativo che seguirà la ditta dall'attivazione sarà dalle 07:00 alle 19:00, pertanto considerate 12 ore lavorative giornaliere si stima cautelativamente 3 mezzi pesanti in ingresso e altrettanti in uscita dalla sede aziendale.

Se ne deduce quindi che i portoni saranno aperti/chiusi in media 6 volte al giorno, per il tempo

del passaggio del mezzo, stimato in via cautelativa in 2 minuti; ne consegue che i portoni rimangono aperti in mediamente per 12 minuti al giorno, tempo che si ritiene trascurabile. Inoltre, tale durata risulta inferiore alla soglia di 52 h/anno, stabilita nell'allegato A1 al D.D. 309/2023 M.A.S.E. per "fenomeni emissivi eccezionali" (12 min/gg x 250 gg lavorativi/anno = 50 h/anno); con ciò l'eventuale emissione dai portoni associata al passaggio dei mezzi si può ritenere non significativa.

- 2- il carico dei silos dei fanghi liquidi identificati con EER 20.03.04 dovrà avvenire al massimo 2 volte al giorno; tale procedura deriva direttamente dalla valutazione numerica della dispersione degli odori, che assume non significativa tale sorgente di emissione. Considerando che il carico ha una durata di circa 5 minuti (come dichiarato dalla ditta stessa), una frequenza di 2 volte al giorno rende la durata complessivamente inferiore alla soglia di 52 h/anno, stabilita nell'allegato A1 al D.D. 309/2023 M.A.S.E. per "fenomeni emissivi eccezionali" (2 x 5 min/gg x 250 gg lavorativi/anno = 50 h/anno ~ 42 h/anno)
- 3- <u>gli stoccaggi dei fanghi</u> saranno limitati alle <u>aree 15, 22, 25 e 29</u> di cui alla planimetria inviata in sede di avvio esercizio in regime provvisorio; tale procedura deriva direttamente dalla valutazione numerica della dispersione degli odori, che assume queste aree come sorgenti emissive
- 4- <u>i fanghi solidi in ingresso dovranno avere una concentrazione massima di odore (C_{od}) pari a 2200 oug/m³</u>; tale procedura deriva direttamente dalla valutazione numerica della dispersione degli odori, che conclude come questo sia il valore massimo per il rispetto presso tutti i recettori delle soglie definite nelle linee di indirizzo del M.A.S.E.

Al fine di rispettare tale prescrizione, sui rifiuti di fanghi in ingresso stoccati nelle suddette aree e identificati con i seguenti codici:

- EER 19 08 14
- EER 03 03 07
- EER 03 03 09
- EER 03 03 10
- EER 03 03 11
- EER 07 01 12
- EER 08 01 12
- EER 08 01 14
- EER 19 02 05*
- EER 19 08 13*
- EER 19 08 11*
- EER 12 01 18*
- EER 08 01 13*
- EER 14 06 05*
- EER 04 01 06
- EER 04 01 07

oltre ai normali controlli (controllo visivo e caratterizzazione analitica di non pericolosità in caso di rifiuti con codice a specchio), dovrà essere analizzata anche la concentrazione di odore espressa come C_{od} (ou_E/m³); tale analisi sarà effettuata per ogni produttore del rifiuto al primo conferimento e poi in caso di modifica al processo di produzione del rifiuto stesso (che il produttore del rifiuto è tenuto a dichiarare), e in ogni caso ripetuta con frequenza annuale.

LABORATORIO

COMMITTENTE

Equipe s.r.l.

Via Sondrio, 2 – Udine 33100 (UD) Via Zamenhof, 709 36100 - Vicenza (VI)

OGGETTO RELAZIONE

Misura concentrazione odore e analisi chimiche

Data	Revisione	Redatto	Verificato	Approvato
05/05/2025	01	Zampella Giorgia	Dott. Ing. Silvia Rivilli	Responsabile Ufficio Tecnico
		hufell Goupre	Silvie Rivilli	Dott. Ing. Silvia Rivilli
		ragion gorg.		Firmato digitalmente da:
		<u>@</u>		SILVIA RIVILLI
				05/05/2025 13:09
LOD RT 255/25	'	'		'

Sommario

So	mm	ario	2
1.	Int	troduzione	3
2.	De	escrizione dell'impianto	5
3.	Ind	dagine olfattometrica	6
3	3.1	Campionamento	6
3	3.2	Analisi in camera olfattometrica	9
4.	An	nalisi chimiche	. 10
5.	Ri	sultati	11
6.	Va	ılutazione dei risultati olfattometrici	. 13
e	5.1	Valutazione dati areali	. 13
6	5.2	Valutazione prelievo puntuale da sfiato	. 14
7.	Va	ılutazione dei risultati dell'analisi chimica	. 16
8.	Со	nclusioni	. 19

1. Introduzione

In data 18 marzo 2025, presso lo stabilimento di EQUIPE SRL sito a San Vito di Leguzzano (VI) in Via Vicenza, 11, è stata condotta una campagna di analisi delle emissioni odorigene.

La necessità di definizione di una campagna di analisi delle emissioni odorigene nasce dalla richiesta prot. n. 59609 del 20/12/2024, ovvero la pec Prot.N. GE 2025/0001000 del 10/01/2025, inviata a seguito della prescrizione n. 4 "Odori" al Parere del CTP VIA n. 09/2022, parte integrante della Determina n. 1640 del 22/11/2022, con cui veniva rilasciato alla ditta Equipe S.r.l. Provvedimento di Valutazione di Impatto Ambientale e Contestuale approvazione progetto ai sensi dell'art. 27 bis del D. Lgs. 152/2006 e s.m.i.. Nello specifico, si richiede di:

- "verificare la possibilità di integrare la proposta con le sostanze elencate nell'allegato A.4
 "Caratterizzazione chimica delle emissioni odorigene" al D.M. 309/2023, motivando le scelte
 sui parametri da determinare, in quanto l'eterogeneità delle tipologie di rifiuti ritirati da diverse
 attività amplia lo spettro di indagine;
- 2. integrare la proposta inserendo tra i campionamenti anche gli sfiati dei silos ovvero motivandone l'esclusione, in quanto, seppur con regime intermittente, possono costituire sorgenti concentrate e difficilmente controllabili;
- 3. la definizione di un flusso di massa, derivato dalla sommatoria di tutte le sorgenti esistenti (camini, sfiati silos, portoni, vedere D.M. 309/2023, allegato A.1, punto 3.2) per il quale sia rispettata la condizione di cui al paragrafo 5 dell'allegato A1 al D.M. 309/2023, e definiti, pertanto, i recettori sensibili."

Nello specifico, come riportato nel documento LOD — DOC 14/25 del 14/03/2025, sono state effettuate delle indagini olfattometriche secondo la norma tecnica UNI EN 13725:2022. L'olfattometria dinamica è l'unica metodologia accettata a livello internazionale per la misurazione della concentrazione di odore (European Commission — Integrated Pollution Prevention and Control, Reference Document on the General Principles of Monitoring - July 2003). Il Laboratorio di Olfattometria Dinamica (LOD) effettua l'analisi e lo studio degli odori presenti in campioni d'aria prelevati nelle più svariate condizioni ambientali. Un gruppo di persone selezionate (esaminatori) determina la soglia di rilevazione dell'odore contenuto nell'effluente campionato. Il numero delle diluizioni a cui l'odore diviene percepibile è espresso come indice della concentrazione di odore in: Unità Odorimetriche per Metro Cubo (oue/m³).¹

¹ La norma UNI EN 13725:2022 riporta: "L'unità odorimetrica europea (ou∉) è la quantità di odorante/i che, quando evaporata in 1 m³ di gas neutro in condizioni normali, provoca una risposta fisiologica (soglia di rivelazione) da un gruppo di prova equivalente a quella provocata da una massa di odore di riferimento europeo (EROM), evaporata in 1 m³ di gas neutro in

condizioni normali. Un EROM, evaporato in 1 m³ di gas neutro in condizioni normali, è la massa di sostanza che provoca la risposta fisiologica D_{50} (soglia di rivelazione), valutata da un gruppo di prova di esperti di odore in conformità alla presente norma e che ha, per definizione, una concentrazione di 1 ou ε /m³... Esiste una relazione tra l'ou ε per l'odorante di riferimento e quello per ogni miscela di odoranti. Tale relazione è definita solo a livello della risposta fisiologica D_{50} , dove: **1 EROM = 123**

 $\mu g \ n - butanolo \equiv 1 \ ou_E \ per \ la \ miscela \ di \ odoranti.$ Tale collegamento costituisce la base della rintracciabilità delle unità di

Protocollo p_vi/aooprovi GE/2025/0033412 del 22/07/2025 - Pag. 13 di 80

EQUIPE SRL /LOD RT 255/25

Inoltre, sono state condotte delle analisi chimiche unicamente su uno dei campioni prelevati sui fanghi e su uno dei campioni prelevati sullo sfiato, con l'obiettivo di determinare le sostanze elencate nell'allegato A.4 "Caratterizzazione chimica delle emissioni odorigene" al D.M. 309/2023. L'analisi è condotta sulle sacche prelevate, mediante GC/MS; questo tipo di analisi consente di valutare dal punto di vista quali – quantitativo un gran numero di parametri chimici.

odore di ogni odorante a quella dell'odorante di riferimento. Esso esprime a tutti gli effetti le concentrazioni di odore in termini di "equivalenti in massa dell'n – butanolo".

2. Descrizione dell'impianto

In figura 1 si riporta l'immagine aerea dello stabilimento di EQUIPE SRL, San Vito di Leguzzano (VI).

Figura 1: Immagine aerea di EQUIPE SRL, San Vito di Leguzzano (VI)

3. Indagine olfattometrica

L'indagine olfattometrica si compone di:

- prelievo dei campioni alle sorgenti emissive;
- analisi in camera olfattometrica con olfattometro ed esaminatori selezionati;
- elaborazione statistica dei risultati.

Queste fasi sono descritte nel dettaglio nella norma tecnica UNI EN 13725:2022 "Emissioni da sorgente fissa — Determinazione della concentrazione di odore mediante olfattometria dinamica e della portata di odore". La norma, infatti, specifica un metodo per la determinazione oggettiva della concentrazione di odore di un campione gassoso, utilizzando l'olfattometria dinamica con esaminatori umani e la portata di odore emessa da sorgenti puntiformi, sorgenti superficiali con flusso indotto e sorgenti areali senza flusso indotto. Nel seguito verranno illustrate le varie fasi del lavoro.

3.1 Campionamento

In data 18 marzo 2025, in accordo con il Cliente, sono stati effettuati dei campionamenti come descritto nel **documento LOD – DOC 14/25 del 14/03/2025**, ovvero:

- n. 4 campioni sui cumuli di fanghi forniti dal cliente che siano effettivamente rappresentativi di fanghi conferiti in impianto e che abbiano le caratteristiche olfattive potenzialmente più critiche (i fanghi erano contenuti in big bag al momento del campionamento);
- n. 1 campione sullo sfiato di un serbatoio.

In particolare sono stati prelevati:

• 1 campione su: Rino Mastrotto: CER 040106 - Fango di depurazione Lonigo - Zona 25

Figura 2: Rino Mastrotto: CER 040106 - Fango di depurazione Lonigo - Zona 25

1 campione su: Rino Mastrotto: CER 040106 - Fango di depurazione filtropressato
 Trissino - Zona 25

Figura 3: Rino Mastrotto: CER 040106 - Fango di depurazione filtropressato Trissino - Zona 25

 1 campione su: Rino Mastrotto: CER 040106 - Fango di depurazione essiccato Trissino -Zona 25

 $\textbf{Figura 4}{:}\ \textbf{Rino Mastrotto: CER 040106 - Fango di depurazione essiccato Trissino - Zona 25}$

• 1 campione su: Sicit Group 070112 - Fango di lavorazione - Zona 15

Figura 5: Sicit Group 070112 - Fango di lavorazione - Zona 15

1 campione su: Sfiato CER 200304 - Zona 24

Figura 5: Sfiato CER 200304 - Zona 24

3.2Analisi in camera olfattometrica

Il giorno successivo al campionamento, i campioni olfattometrici sono stati analizzati dal gruppo di prova secondo i requisiti della norma **UNI EN 13725**.

É stato utilizzato un Olfattometro Mod. T O8 EVO (**Figura 6**) dove sono operative quattro postazioni che contemporaneamente permettono agli esaminatori la relativa misurazione. Sono stati utilizzati degli esaminatori che hanno identificato il numero necessario a far giungere l'odore alla "soglia di odore".

Figura 6: analisi in camera olfattometrica.

4. Analisi chimiche

Insieme all'indagine olfattometrica, sono stati eseguiti i campionamenti per le analisi chimiche ai seguenti punti:

- Sicit Group 070112 Fang di lavorazione Zona 15
- Sfiato CER 200304 Zona 24

Tabella 1: composti ricercati con l'analisi chimica

Composto	Metodo
Aldaidi: acataldaida acraalina	Metodo
Composto aromatici: 1,2,3-Trimetilbenzene, 1,2,4-Trimetilbenzene 1,3,5-Trimetilbenzene, Benzene, Etilbenzene, Isopropilbenzene, m,p-Xilene, n-butilbenzene, n-Propilbenzene, p-Isopropiltoluene, sec-Butilbenzene, Stirene, tert-Butilbenzene, Toluene, o-Xilene, Naftalene Composti Organoalogenati: 1,1,1,2-Tetracloroetano, 1,1,1-Tricloroetano 1,1,2,2-Tetracloroetano, 1,1,2-Tricloroetano, 1,1-Dicloroetano, 1,1-Dicloroetano, 1,1-Dicloroetano, 1,2-Tricloroetano, 1,1-Dicloroetano, 1,2-Triclorobenzene, 1,2,3-Tricloropropano 1,2,4-Triclorobenzene, 1,2-Dibromo-3-Cloropropano, 1,2-Dibromoetano 1,2-Diclorobenzene, 1,2-Dicloroetano, cis-1,2-Dicloroetilene trans-1,2-Dicloroetilene, 1,2-dicloro-1,1,2,2-tetrafluoroetano 1,2-Dicloropropano, 1,3-Diclorobenzene, 1,3-Dicloropropano cis-1,3-Dicloropropene, trans-1,3-Dicloropropene, 1,4-Diclorobenzene 2,2-Dicloropropano, 2-Clorotoluene, 4-Clorotoluene, Benzilcloruro Bromobenzene, Bromodiclorometano, Bromoetano, Bromoformio Bromometano, Carbonio tetracloruro, Clorobenzene Clorodifluorometano (R22), Cloroetano, Cloroformio, Clorometano Cloruro di allile, Cloruro di vinile, Dibromoclorometano, Dibromometano Diclorodifluorometano, Esaclorobutadiene, Esacloroetano, Metilene cloruro, Pentacloroetano, Tetracloroetilene, Tricloroetilene, Triclorofluorometano, a,a,a-Triclorotoluene	T.A. SXGC 01/19
Alcoli: Alcool etilico, Alcool terz-Butilico, Isobutanolo, Isopropanolo, Metanolo, n-Butanolo, n-Propanolo Chetoni: Acetone, Metilbutilchetone (2-Esanone), Metiletilchetone Metilisobutilchetone	
Composti organici: 1,3-Butadiene, 1-Butene, 4-etiltoluene, 2-Metilpentano, 3-Metilpentano, 4-Vinilcicloesene, Acetato di etile, Acetato di isobutile, Acetato di metile, Acetato di n-Butile, Acetato di propile, Acetato di vinile, Alfa-pinene, Beta-pinene, Bromuro di vinile, Butano, Cicloesano, Diallil solfuro, Dietil solfuro, Dimetildisolfuro, Dimetil solfuro, Dimetil trisolfuro, Diossano, Etilidennorbornene (ENB), Etilterbutiletere, Isoottano, Isopentano, Isoprene, Limonene, Metil metacrilato, Metiletil solfuro, Metilpentano isomeri, Metilterbutiletere, n-Decano, n-Dodecano, n-Eptano, n-Esano, n-Nonano, n-Ottano, n-Pentano, n-Undecano, Propene, Solfuro di carbonio, Solfuro di carbonile, Tetraidrofurano, Tetraidrotiofene, Tiofene, Etilmercaptano, Isobutilmercaptano, Isopropilmercaptano, Metilmercaptano, n-Butilmercaptano, n-Propilmercaptano, Sec-Butilmercaptano, Terbutilmercaptano	

5. Risultati

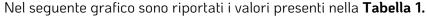
Le seguenti tabelle riportano i risultati delle analisi dei campioni prelevati in termini di concentrazione di odore e di analisi chimica.

Si precisa che sono riportati unicamente i composti chimici rilevati nel corso dell'analisi, i rapporti di prova sono allegati alla relazione.

Tabella 2: sintesi dei risultati dell'indagine olfattometrica

Numero campione	Denominazione campione	Tipologia prelievo	Ora prelievo	c₀d (ou∈/m³)
1	Rino Mastrotto: CER 040106 - Fango di depurazione Lonigo - Zona 25	Prelievo da superficie estesa non emissiva	10:30	430
2	Rino Mastrotto: CER 040106 - Fango di depurazione filtropressato Trissino - Zona 25	Prelievo da superficie estesa non emissiva	10:40	2.000
3	Rino Mastrotto: CER 040106 - Fango di depurazione essiccato Trissino - Zona 25	Prelievo da superficie estesa non emissiva	10:50	1.700
4	Sicit Group 070112 - Fango di lavorazione Zona 15	Prelievo da superficie estesa non emissiva	11:00	600
5	Sfiato CER 200304 - Zona 24	Prelievo puntuale da condotto	11:30	5.800

Tabella 3: sintesi dei risultati dell'analisi chimica


		Sicit Group 070112 - Fang di lavorazione - Zona 15	Sfiato CER 200304 - Zona 24
Analita	Unità	Conc. Rilevata	Conc. Rilevata
Etilbenzene	μg/m³	2,38	3,56
m,p-Xilene	μg/m³	5,4	-
Toluene	μg/m³	9,7	510
o-Xilene	μg/m³	1,63	-
trans-1,2-Dicloroetilene	μg/m³	2,90	1,29
Cloroformio	μg/m³	7,8	12,9

		Sicit Group 070112 - Fang di lavorazione - Zona 15	Sfiato CER 200304 - Zona 24
Analita	Unità	Conc. Rilevata	Conc. Rilevata
Diclorodifluorometano	μg/m³	2,8	4,8
Metilene cloruro	μg/m³	5,8	5,2
Tetracloroetilene	μg/m³	3,7	3,21
Triclorofluorometano	μg/m³	_	4,7
Alcool etilico	μg/m³	87	118
Isopropanolo	μg/m³	39	32
Metanolo	μg/m³	32,2	30,9
n-Butanolo	μg/m³	22,4	_
Acetone	μg/m³	62	38
1-Butene	μg/m³	_	72
Cicloesano	μg/m³	-	4,2

6. Valutazione dei risultati olfattometrici

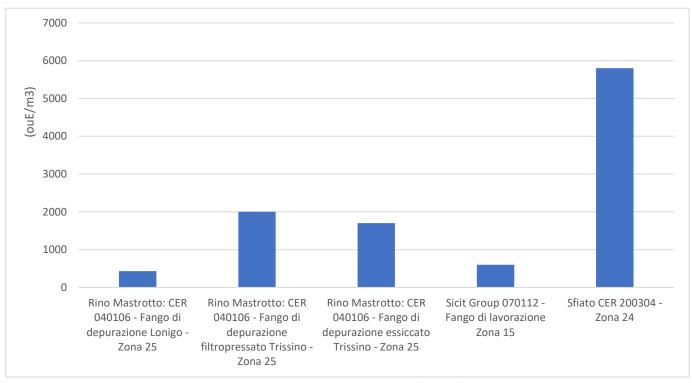


Figura 7: rappresentazione grafica dei risultati.

6.1 Valutazione dati areali

Per i campioni prelevati mediante l'utilizzo di wind tunnel è possibile calcolare la portata di odore, sulla base delle indicazioni fornite nel Decreto direttoriale di approvazione degli indirizzi per l'applicazione dell'articolo 272-bis del dlgs 152/2006 in materia di emissioni odorigene di impianti e attività elaborato dal "Coordinamento Emissioni" pubblicati dal Ministero dell'Ambiente e della Sicurezza Energetica in data 28/06/2023, secondo la formula riportata nell'allegato 2:

$$SOER = \frac{Q_{effl} \cdot c_{od}}{A_{base}}$$

SOER = flusso specifico di odore (ou $\varepsilon/m^2/s$)

 Q_{effl} = portata volumetrica di aria uscente dalla cappa (m³/s)

 $c_{od} = concentrazione di odore misurata (ou_{E}/m^{3})$

 $A_{base} = area di base della cappa (m^2).$

Infine, per calcolare l'OER, ovvero la portata di odore, è sufficiente moltiplicare il parametro SOER per la superficie emissiva, i.e. la superficie totale della sorgente considerata:

$$OER = SOER \cdot A_{omiss}$$

 $OER = portata di odore (ou_{\epsilon}/s)$

SOER = flusso specifico di odore (ou $\varepsilon/m^2/s$)

 $A_{emiss} = superficie emissiva (m^2)$. "

Si riportano in tabella a seguire i valori calcolati di portata d'odore e portata d'odore specifica per le superfici campionate. Per quanto riguarda la portata d'odore indicata, è stata calcolata a partire dalla SOER indicata e la superficie emissiva totale stimata: questa è stata a sua volta calcolata considerando tutte le baie piene per la totalità del loro volume.

Tale assunzione permette di avere il massimo valore di superficie emissiva, e di conseguenza un maggiore margine di cautela.

Il dato di portata d'odore è indicato unitamente per la totalità delle sorgenti emissive.

Tabella 4: calcolo OER per ciascuna emissione considerata.

Denominazione campione	c₀d (ou∈/m³)	Q flussimetro (m³/h)	SOER (ou∈/m²s)	Superficie emissiva TOTALE (m²)	OER (ou∈/s)
Rino Mastrotto: CER 040106 - Fango di depurazione Lonigo - Zona 25	430	1,5	1,52		357,4
Rino Mastrotto: CER 040106 - Fango di depurazione filtropressato Trissino - Zona 25	2.000	1,5	7,09	235,1	1666,1
Rino Mastrotto: CER 040106 - Fango di depurazione essiccato Trissino - Zona 25	1.700	1,5	6,02		1415,3
Sicit Group 070112 - Fango di lavorazione Zona 15	600	1,5	2,13		500,8

6.2 Valutazione prelievo puntuale da sfiato

In merito al prelievo puntuale da sfiato è stato rilevato quanto segue:

Tabella 5: sintesi dei risultati dell'indagine olfattometrica

Denominazione campione	T (°C)	RH (%)	c _{od} (ou∈/m³)
Sfiato CER 200304 - Zona 24	16,7	63,2	5800

La sorgente in questione è stata ritenuta non significativa in quanto, come comunicato dal cliente, il carico dei serbatoi è previsto con frequenza settimanale e una durata di cinque minuti circa.

Un tale fenomeno emissivo risulta quindi avere durata inferiore alla soglia di 52 ore/anno, stabilita **nell'allegato A1 al D.D. 309/2023 M.A.S.E.** per "fenomeni emissivi eccezionali".

In aggiunta, i quantitativi di fanghi movimentati sono nell'ordine di 15 metri cubi per singolo serbatoio e pertanto limitati anche in senso volumetrico.

7. Valutazione dei risultati dell'analisi chimica

Allo scopo di valutare dal punto di vista dell'impatto odorigeno i risultati dell'analisi chimica, si riporta di seguito il calcolo degli **Odour activity value** condotto sulla base di quanto riportato **nell'Allegato A.4 delle Linee di Indirizzo Ministeriali pubblicate con Decreto MASE il 28/06/2023** "Non è nota una relazione quantitativa che leghi la composizione chimica di un'aria osmogena con la sua concentrazione di odore. Un'informazione utile, anche se parziale, è fornita dal calcolo degli Odour Activity Value (OAV) delle sostanze che costituiscono una miscela odorigena, ottenuta dal rapporto tra la concentrazione di ogni analita e la sua soglia di percezione olfattiva (Odour Threshold Concentration, OTC): la somma degli OAV di una miscela è proporzionale in prima approssimazione alla sua concentrazione di odore".

Si precisa che sono stati valutati solamente quei composti la cui concentrazione superava la soglia di rilevabilità strumentale. Gli OTV elencati sono presenti nel **DD MASE 28/06/2023.**

Tabella 6: confronto con gli OTV per il campione prelevato sul fango

Tabella G. Collifoli			Sicit Group 070112 - Fang di lavorazione - Zona 15		
Analita	Unità	отv	Conc. Rilevata	OAV	
Etilbenzene	μg/m³	744,264	2,38	0,003198	
m,p-Xilene	μg/m³	1663,538	5,4	0,003246	
Toluene	μg/m³	1253,864	9,7	0,007736	
o-Xilene	μg/m³	1663,538	1,63	0,000980	
trans-1,2-Dicloroetilene	μg/m³	67964,948	2,90	0,000	
Cloroformio	μg/m³	18706,969	7,8	0,000417	
Diclorodifluorometano	μg/m³	-	2,8	-	
Metilene cloruro	μg/m³	560362,887	5,8	0,000010	
Tetracloroetilene	μg/m³	5265,212	3,7	0,000703	
Alcool etilico	μg/m³	987,850	87	0,088070	
Isopropanolo	μg/m³	64437,113	39	0,000605	
Metanolo	μg/m³	43603,546	32,2	0,000738	
n-Butanolo	μg/m³	116,147	22,4	0,192859	
Acetone	μg/m³	100592,165	62	0,192859	
somma OAV			0,491421		
C od			600		

Tabella 7: confronto con gli OTV per il campione prelevato allo sfiato

rasena 7. com		gli UTV per il cam	Sfiato CER 200304 - Zona 24		
Analita	Unità	ОТV	Conc. Rilevata	OAV	
Etilbenzene	μg/m³	744,264	3,56	0,00478325	
Toluene	μg/m³	1253,864	510	0,40674268	
trans-1,2- Dicloroetilene	μg/m³	67964,94845	1,29	1,898E-05	
Cloroformio	μg/m³	18706,969	12,9	0,00068958	
Diclorodifluorometano	μg/m³		4,8		
Metilene cloruro	μg/m³	560362,887	5,2	9,2797E-06	
Tetracloroetilene	μg/m³	5265,212	3,21	0,00060966	
Triclorofluorometano	μg/m³	28323,711	4,7	0,00016594	
Alcool etilico	μg/m³	987,850	118	0,11945135	
Isopropanolo	μg/m³	64437,113	32	0,00049661	
Metanolo	μg/m³	43603,546	30,9	0,00070866	
Acetone	μg/m³	100592,165	38	0,00037776	
1-Butene	μg/m³	832,914	72	0,08644352	
Cicloesano	μg/m³	8676,289	4,2	0,00048408	
Dimetildisolfuro	μg/m³	11,091	390	35,1645287	
Dimetil solfuro	μg/m³	7,686	230	29,9238157	
Limonene	μg/m³	112,363	92	0,81877569	
n-Eptano	μg/m³	2768,689	27,3	0,00986026	
n-Esano	μg/m³	5330,722	14,8	0,00277636	
n-Nonano	μg/m³	11630,515	11,1	0,00095439	
n-Ottano	μg/m³	8007,876	38,9	0,00485772	
n-Pentano	μg/m³	4165,361	380	0,09122859	
Propene	μg/m³	22558,351	21,2	0,00093979	
Solfuro di carbonio	μg/m³	538,033	8,6	0,01598415	
Solfuro di carbonile	μg/m³	136,241	48	0,35231624	

			Sfiato CER 200304 - Zona 24	
Analita	Unità	OTV	Conc. Rilevata	OAV
Metilmercaptano	μg/m³	0,139	38	273,628886
somma OAV			340,6359049	
C od			5.800	

Osservando i dati riportati nelle tabelle possiamo affermare che, limitatamente ai campioni analizzati:

- Sul fango non sono stati individuati dei composti "traccianti", ovvero potenzialmente responsabili dell'emissione odorigena, in quanto nessun composto ha presentato un valore di OAV superiore a 1;
- Allo sfiato ci sono 3 composti che agiscono come potenziali "traccianti" per l'odore, ovvero il metilmercaptano (che riveste un ruolo predominante), il dimetildisolfuro e il dimetilsolfuro.
- Si precisa quanto evidenziato dal **DD MASE 309/2023 nell'allegato 4**, ovvero "L'applicazione del calcolo degli OAV è valida nell'ipotesi di ignorare l'interazione tra i vari componenti della miscela (effetti additivi, antagonistici o sinergici). In generale, OAV è equivalente alla concentrazione di odore di un singolo odorante mentre, in una miscela odorigena, la discrepanza tra la somma degli OAV e la concentrazione di odore può variare di uno o due ordini di grandezza, a causa degli effetti di interazione non valutati. Allo stato attuale, sono ancora limitati gli studi sulla valutazione degli effetti di interazione degli odorigeni e sulla variazione degli OAV".

8. Conclusioni

La presente relazione ha l'obiettivo di rispondere alla richiesta prot. n. 59609 del 20/12/2024, ovvero la pec Prot.N. GE 2025/0001000 del 10/01/2025, inviata a seguito della prescrizione n. 4 "Odori" al Parere del CTP VIA n. 09/2022, parte integrante della Determina n. 1640 del 22/11/2022, con cui veniva rilasciato alla ditta Equipe S.r.l. Provvedimento di Valutazione di Impatto Ambientale e Contestuale approvazione progetto ai sensi dell'art. 27 bis del D. Lgs. 152/2006 e s.m.i..

Nello specifico, si richiede di:

- "verificare la possibilità di integrare la proposta con le sostanze elencate nell'allegato A.4
 "Caratterizzazione chimica delle emissioni odorigene" al D.M. 309/2023, motivando le
 scelte sui parametri da determinare, in quanto l'eterogeneità delle tipologie di rifiuti ritirati
 da diverse attività amplia lo spettro di indagine;
- integrare la proposta inserendo tra i campionamenti anche gli sfiati dei silos ovvero motivandone l'esclusione, in quanto, seppur con regime intermittente, possono costituire sorgenti concentrate e difficilmente controllabili;
- 3. la definizione di un flusso di massa, derivato dalla sommatoria di tutte le sorgenti esistenti (camini, sfiati silos, portoni, vedere D.M. 309/2023, allegato A.1, punto 3.2) per il quale sia rispettata la condizione di cui al paragrafo 5 dell'allegato A1 al D.M. 309/2023, e definiti, pertanto, i recettori sensibili."

La campagna di misura condotta ha consentito di:

- 1. valutare i composti chimici potenzialmente "traccianti" dell'odore: sono stati prelevati 2 campioni, uno sui fanghi e uno allo sfiato dei silos.
 - Sul campione prelevato sui fanghi non è stato individuato alcun composto come "tracciante", mentre sul campione prelevato allo sfiato ci sono 3 composti che agiscono come potenziali "traccianti" per l'odore, ovvero il metilmercaptano (che riveste un ruolo predominante), il dimetildisolfuro e il dimetilsolfuro;
- 2. nell'indagine olfattometrica è stato prelevato un campione di odore allo sfiato, che ha rilevato una concentrazione di odore pari a 5.800 ou∈/m³. La sorgente in questione è stata ritenuta non significativa in quanto, come comunicato dal cliente, il carico dei serbatoi è previsto con frequenza settimanale e una durata di cinque minuti circa. Un tale fenomeno emissivo risulta quindi avere durata inferiore alla soglia di 52 ore/anno, stabilita nell'allegato A1 al D.D. 309/2023 M.A.S.€. per "fenomeni emissivi eccezionali". In aggiunta, i quantitativi di fanghi movimentati sono nell'ordine di 15 metri cubi per singolo serbatoio e pertanto limitati anche in senso volumetrico.
- 3. Al fine di valutare il flusso di massa dell'emissione odorigena potenzialmente associata all'impianto, in assenza di limiti per le emissioni odorigene, è stato utilizzato come criterio quello codificato dal Decreto direttoriale di approvazione degli indirizzi per l'applicazione dell'articolo 272-bis del dlgs 152/2006 in materia di emissioni odorigene di impianti e

attività elaborato dal "Coordinamento Emissioni" pubblicati dal Ministero dell'Ambiente e della Sicurezza Energetica in data 28/06/2023, identifica come emissioni odorigene quelle sorgenti caratterizzate da un flusso di odore > 500 ou $_{\rm E}/{\rm s}$ (rif. Paragrafo 3.1 dell'Allegato A.1 "Criteri per l'individuazione delle sorgenti da considerare nello scenario emissivo". Nello specifico: "Nello scenario emissivo da impiegare nelle simulazioni per la stima dell'impatto olfattivo devono essere considerate tutte le sorgenti di emissione dell'impianto oggetto dello studio. In generale, si considerano significative le sorgenti per le quali la portata di odore sia maggiore di 500 ou $_{\rm E}/{\rm s}$, ad eccezione delle sorgenti con concentrazione di odore massima inferiore a 80 ou $_{\rm E}/{\rm m}^3$ indipendentemente dalla portata volumetrica emessa").

Tabella 8: tabella riassuntiva delle sorgenti odorigene

Denominazione campione	c _{od} (ou _E /m³)	OER (ouE/s)	Sorgente odorigena?
Rino Mastrotto: CER 040106 - Fango di depurazione Lonigo - Zona 25	430	357	NO
Rino Mastrotto: CER 040106 - Fango di depurazione filtropressato Trissino - Zona 25	2.000	1.666	SI
Rino Mastrotto: CER 040106 - Fango di depurazione essiccato Trissino - Zona 25	1.700	1.415	SI
Sicit Group 070112 - Fango di lavorazione Zona 15	600	500	SI

Dai risultati emerge che, se si considerano tutti i cumuli come aventi concentrazione d'odore pari quella massima rilevata (approccio maggiormente cautelativo), l'insieme delle sorgenti risulta significativo ai fini della valutazione delle emissioni odorigene.

Sulla base di ciò, si procederà alla modellazione delle emissioni odorigene dell'impianto, al fine di determinare l'impatto in ricaduta sul territorio circostante (seconda fase dell'attività di monitoraggio odorigeno).

Protocollo p_vi/aooprovi GE/2025/0033412 del 22/07/2025 - Pag. 30 di 80

RAPPORTO DI PROVA RT 231/25

M 05.03 Rev 19 del 13/06/2024

LAB Nº 1744 L Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC Signatory of EA, IAF and ILAC Mutual Recognition Agreements

ANALISI OLFATTOMETRICHE DI CAMPIONI AERIFORMI rev00

CLIENTE: Equipe S.r.l. INDIRIZZO:

via Zamenhof, 709 - Vicenza (VI)

DATA PRELIEVO(L): **DATA RICEVIMENTO:**

18/03/2025 18/03/2025 LUOGO PRELIEVO(M): DATA ANALISI:

via Vicenza, 11 - San Vito di Leguzzano (VI) 19/03/2025

DATA EMISSIONE RdP: 05/05/2025

LUOGO DI PROVA: Laboratorio Olfattometria Dinamica S.r.l. - via Sondrio, 2 - Udine

Tipologia emissione	ora prelievo:	ora analisi:	modalità di campionamento ¹	temp. aria in camera Olf. (°C)	Concentrazione di odore (ou _E /m³)
Rino Mastrotto: CER 040106 - Fango di depurazione Lonigo - Zona 25	10:30	11:22	С	24,2	430
Rino Mastrotto: CER 040106 - Fango di depurazione filtropressato Trissino - Zona 25	10:40	11:31	С	23,9	2.000
Rino Mastrotto: CER 040106 - Fango di depurazione essiccato Trissino - Zona 25	10:50	11:38	С	23,4	1.700
Sicit Group 070112 - Fango di lavorazione Zona 15	11:00	11:50	С	23,3	600
Sfiato CER 200304 - Zona 24	11:30	11:59	A	23,3	5.800
					· ·
	Rino Mastrotto: CER 040106 - Fango di depurazione Lonigo - Zona 25 Rino Mastrotto: CER 040106 - Fango di depurazione filtropressalto Trissino - Zona 25 Rino Mastrotto: CER 040106 - Fango di depurazione essicato Trissino - Zona 25 Sicit Group 070112 - Fango di lavorazione Zona 15	Rino Mastrotto: CER 040106 - Fango di depurazione Lonigo - Zona 25	Rino Mastrotto: CER 040106 - Fango di depurazione Lonigo - Zona 25 10:30 11:22	Tipologia emissione	CC CC Campionamento CC CC CC CC CC CC CC

Note:

(2) indica che le informazioni non sono state fornite dal Cliente; (3) indica che il campione è stato analizzato in accordo con il Cliente, nonostante le modalità di campionamento e/o di trasporto non siano conformi a quanto previsto dalla norma UNI EN 13725:2022. LOD s.r.l. declina ogni responsabilità in merito a eventuali scostamenti che tale non conformità può implicare nei relativi risultati analitici; < LoD indica che il valore di concentrazione di odore rilevato è inferiore al limite di rilevabilità; < LoQ indica che il valore di concentrazione rilevato è inferiore al limite di quantificazione.

Modalità di campionamento:	Campionamento a cura del LOD. Le informazioni riportate in (F),(M) sono quelle indicate dal Cliente. LOD s.r.l. declina ogni responsabilità in merito a tali informazioni e alle implicazioni che possono avere sui risultati. Rif. Piano di Campionamento M 04.06			
Modalità di prova:	UNI EN 13725:2022 Yes/No method	Contenitore:	bags in Nalophan® spessore 20 μm	
Olfattometro:	Odournet TO8 EVO - 8008 - matricola interna 'K0A'			
Odorante di riferimento:	1-Butanolo (CAS No. 71-36-3) a varie concentrazioni certificate, in bombola.			

Accuratezza sensoriale complessiva: Variabili di qualità sensoriale complessiva al 11/06/2024: Aod = 0,02 r = 0,08

L'incertezza estesa, qualora richiesta esplicitamente dal Cliente, è calcolata applicando un fattore di copertura k = 2 al livello di fiducia p = 95%

1: Legenda: A = istruzione I 04.01 prelievo puntuale da condotto; B = istruzione I 04.02 prelievo da superficie estesa emissiva; C = istruzione I 04.03 prelievo da superficie estesa non emissiva; D = istruzione I 04.04 prelievo di aria ambiente. Piano di campionamento M 04.06 riferito al presente LOD/RT.

Il Rapporto di Prova riguarda solo i campioni sottoposti a prova. La riproduzione parziale deve essere autorizzata per iscritto da LOD srl.

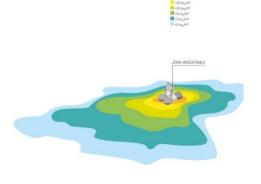
IL RESPONSABILE TECNICO Ing. Silvia Rivilli

REGIONE VENETO

COMUNE DI SAN VITO DI LEGUZZANO (VI)

LABORATORIO

COMMITTENTE


Via Sondrio, 2 - Udine 33100 (UD)

Via Zamenhof 709 — Vicenza 36100 (VI)

OGGETTO RELAZIONE

Valutazione numerica della dispersione

Data	Revisione	Redatto	Verificato	Approvato
05.05.2025	01	Dott. Pico Giacomo Dott. Pontello Marco	Dott. Ing. Rivilli Silvia	Responsabile Ufficio Tecnico Dott. Ing. Rivilli Silvia
		Great wille fer	sione invice	Firmato digitalmente da: SILVIA RIVILLI 05/05/2025 13:10
LOD RT 309/25				

Sommario

SOMMARIO	I
1. INTRODUZIONE	2
2. INDIVIDUAZIONE DELLO SCENARIO E DESCRIZIONE DELLA METODOLOGIA NUMERICA	3
2.1 Introduzione	3
2.2 Definizione dello scenario	4
2.3 Elaborazione dei risultati	5
3.1 Dati meteorologici	6
3.1.1 Analisi preliminare dei dati meteorologici e anemometrici	8
3.2 Esame dei dati cartografici e dell'uso del suolo	12
3.2.1 Recettori sensibili	15
3.3Settaggio modellistico	17
3.4Sorgenti emissive: fase 1	19
5.1 Sorgenti emissive: fase 2	24
4 RISULTATI	26
5 CONCLUSIONI	29
5.1 Commento fase 1	29
5.2 Definizione dello scenario massimo emissivo (fase 2)	30
6 BIBLIOGRAFIA	31
ALLEGATO 1: CALCOLO DEL 98° PERCENTILE	32
ALLEGATO 2: DESCRIZIONE DEL MODELLO DI DISPERSIONE CALPUFF	
CALMET: Pre-processore meteorologico	33
Caratteristiche del puff e concentrazioni al suolo	
ALLEGATO 3: INPUT E PRINCIPALI CONFIGURAZIONI MODELLISTICHE (TABELLA BASATA SU ALLEGATO A1 DECRETO MASE N.309 DEL 28.06.2023)	

1. Introduzione

Nel presente rapporto tecnico si riportano i risultati dello studio della dispersione in atmosfera e della ricaduta al suolo delle emissioni odorigene relative all'impianto di Equipe S.r.l. situato nel comune di San Vito di Leguzzano (VI), sul territorio circostante il sito.

Al fine di ottemperare a quanto richiesto tramite il documento "Proposta di campagna analisi emissioni odorigene - Prescrizione n. 4 "Odori" del Parere del Comitato Tecnico VIA n. 09/2022, parte integrante della Determina n. 1640 del 22/11/2022" redatto dal Servizio Rifiuti VIA e VAS della Provincia di Vicenza, sono state svolte due diverse fasi di elaborazione:

- la prima mirata a valutare il potenziale impatto olfattivo dell'installazione sulla base delle evidenze emerse durante l'attività di campionamento olfattometrico e, di conseguenza, tramite approccio "diretto" alla modellazione delle emissioni;
- la seconda con l'obiettivo di stabilire, per la configurazione emissiva previsionale descritta nei capitoli successivi, una portata d'odore specifica massima che garantisca il rispetto dei valori di accettabilità del disturbo olfattivo, conformemente a quanto indicato dal DD MASE 309/2023.

Il modello utilizzato per le simulazioni è CALPUFF.

I risultati sono espressi in termini di ou_{ϵ}/m^3 , ovvero unità olfattometriche al metro cubo. Tale unità di misura rappresenta il numero di diluizioni necessarie affinché il 50% degli esaminatori non avverta più l'odore del campione analizzato.

Per valutare l'accettabilità dell'esposizione olfattiva sul territorio conseguente alle emissioni di odore del sito in esame si può considerare come riferimento la recente emanazione del decreto direttoriale del M.A.S.E. di approvazione degli Indirizzi per l'applicazione dell'articolo 272-bis del D.Lgs 152/2006 in materia di emissioni odorigene di impianti e attività e dei relativi allegati. In particolare, si è preso a riferimento l'allegato A.1 "Requisiti degli studi di impatto olfattivo mediante simulazione di dispersione".

2. Individuazione dello scenario e descrizione della metodologia numerica

2.1 Introduzione

La valutazione della dispersione dell'odore è stata realizzata mediante il modello di dispersione *CALPUFF*. In base all'esperienza maturata in seno a LOD S.r.l., *CALPUFF* è risultato essere particolarmente adatto per la simulazione della dispersione di odori su scala locale.

I modelli di dispersione utilizzano complicati algoritmi per simulare il trasporto e le cinetiche degli inquinanti negli strati inferiori dell'atmosfera maggiormente interessati all'inquinamento. Per conseguire tale obiettivo, i modelli necessitano di dati di ingresso suddivisibili nelle seguenti categorie:

- dati meteorologici: anemologia, temperatura e umidità dell'aria, stabilità atmosferica;
- dati cartografici: orografia, cartografia, uso del suolo;
- dati emissivi: caratteristiche geometriche e localizzazione delle sorgenti emissive, concentrazione dell'odore e flusso di massa.

La scelta del modello viene effettuata spesso in base alle caratteristiche dello *scenario*, definito come l'insieme degli elementi che caratterizzano una specifica applicazione. Sulla base delle linee guida riportate nella norma **UNI 10796:2000** (Valutazione della dispersione in atmosfera di effluenti aeriformi — Guida ai criteri di selezione dei modelli matematici) uno scenario può essere descritto sulla base di cinque elementi:

- scala spaziale: dominio di calcolo per la dispersione. Si possono distinguere applicazioni a microscala (fino 1 km), a scala locale (fino a 10-20 km), a mesoscala (fino a 100-200 km) e a grande scala (fino a 1.000-2.000 km);
- indice temporale: applicazioni a breve periodo (da pochi minuti ad alcuni giorni) e a lungo periodo (periodi stagionali ed annuali) e modelli previsionali a breve-medio termine (da un'ora fino ad una settimana);
- ambito territoriale: si distinguono applicazioni su sito semplice (pianeggiante, caratteristiche territoriali omogenee) o su sito complesso (orografia complessa, caratteristiche territoriali disomogenee);
- tipologie di sorgenti: puntiformi, areali, lineari o volumetriche;
- specie simulata: odori, inquinanti chimici.

La definizione precisa dello scenario è un requisito fondamentale per la corretta applicazione dei modelli di dispersione: essa nasce dalla precisa individuazione degli obiettivi dello studio modellistico opportunamente adattati allo specifico contesto nel quale esso viene applicato.

I modelli di dispersione possono venire classificati in base al sistema di riferimento rispetto al quale vengono scritte e risolte le equazioni di conservazione della massa. Se il riferimento è solidale con l'emissione, il modello viene detto *lagrangiano*, mentre se è solidale con il dominio di calcolo viene detto *euleriano*. In *CALPUFF*, l'emissione continua viene approssimata come una successione di rilasci discreti di forma sferica detti *puff* e per ognuna di queste unità viene scritta e risolta l'equazione di

conservazione della massa: per tali motivi, *CALPUFF* viene definito modello lagrangiano a *puff*. *CALPUFF* è inoltre in grado di operare con condizioni meteorologiche ed emissive non stazionarie, con campo di vento tridimensionale, in siti con orografie complesse e con inquinanti reattivi.

2.2 Definizione dello scenario

Entrando nello specifico del caso oggetto di studio, è possibile individuare i seguenti elementi rappresentativi dello scenario in cui avverrà la simulazione numerica:

Scala L'applicazione del modello riguarda la valutazione dell'impatto su un territorio in prossimità dello stabilimento: per tale ragione la scala di riferimento sarà di tipo locale, limitata a qualche chilometro in linea d'aria attorno al sito.

IndiceLa simulazione valuta la dispersione per un periodo di <u>un anno solare</u>: in questo modo sarà possibile valutare il contributo stagionale dei venti e della meteorologia sulla dispersione. Nella simulazione è stato considerato l'anno 2024.

Ambito Il sito su cui verrà applicato il modello si trova nel comune di San Vito di Leguzzano territoriale: (VI) e presenta un'orografia <u>semplice</u>. Un'ulteriore descrizione dei dati orografici è presentata nel paragrafo 3.2.

Sorgente: Ai fini del modello verranno considerate differenti <u>sorgenti puntuali</u>. Ulteriori approfondimenti sono riportati nel paragrafo 3.4.

Specie La valutazione dell'impatto riguarda l'emissione di <u>odore</u>. Ulteriori approfondimenti sono riportati nel paragrafo 3.4.

2.3 Elaborazione dei risultati

Per l'elaborazione e la valutazione dei risultati, come documenti di riferimento è stato considerato l'allegato A.1 "Requisiti degli studi di impatto olfattivo mediante simulazione di dispersione" del Decreto MASE del 28/06/2023.

I valori evidenziati sulle mappe di isoconcentrazione che sono prodotte seguono quanto indicato dal citato documento. A tal proposito evidenziamo che a:

- 1 ou_€/m³ circa il 50 % della popolazione percepisce odore;
- 3 ou_E/m³ circa l'85% della popolazione percepisce odore;
- $5 \text{ ou}_{\text{F}}/\text{m}^3$ circa il 90 95% della popolazione percepisce odore.

In particolare, in allegato al **Decreto MASE**, i "Requisiti degli studi di impatto olfattivo mediante simulazione di dispersione" (Allegato A.1) presentano i criteri di selezione dei dati di input e le modalità di presentazione dei risultati. L'approccio modellistico suggerito dalla normativa prevede:

- Svolgimento di una simulazione della durata di un anno;
- Calcolo delle concentrazioni medie orarie per tutto l'anno tenendo conto delle diverse frequenze di funzionamento dell'impianto;
- Calcolo del livello di picco d'odore della durata di 3 secondi (tempo di un respiro);
- Calcolo del 98° percentile della distribuzione annua, che viene utilizzato per quantificare l'accettabilità dell'esposizione all'odore da parte della popolazione. Il 98° percentile rappresenta il valore che non viene superato più del 2% del tempo di durata della simulazione. In questo caso significa che non si supererà il valore corrispondente al 98° percentile per 175 ore in un anno. Il calcolo del 98° percentile viene effettuato per ogni recettore della griglia computazionale secondo il procedimento riportato in Allegato 1.

Le curve di isoconcentrazione ottenute sono state sovrapposte quindi alla ortofoto, per poter apprezzare meglio l'impatto odorigeno sul territorio.

3. Dati di input del modello

Il modello di dispersione necessita di dati di *input* relativi alle condizioni meteorologiche, orografiche ed allo scenario emissivo. Tali dati vanno esaminati attentamente per:

- valutare se sono sufficienti a descrivere la dispersione delle sostanze simulate;
- effettuare opportune semplificazioni che facilitino le operazioni di calcolo;
- comprendere ed interpretare in seguito i risultati ottenuti.

3.1 Dati meteorologici

Per la zona in esame sono stati acquisiti dati meteorologici al suolo e radiosondaggi.

Tabella 1: Caratteristiche dei dati meteorologici, stazioni al suolo e dati in quota.

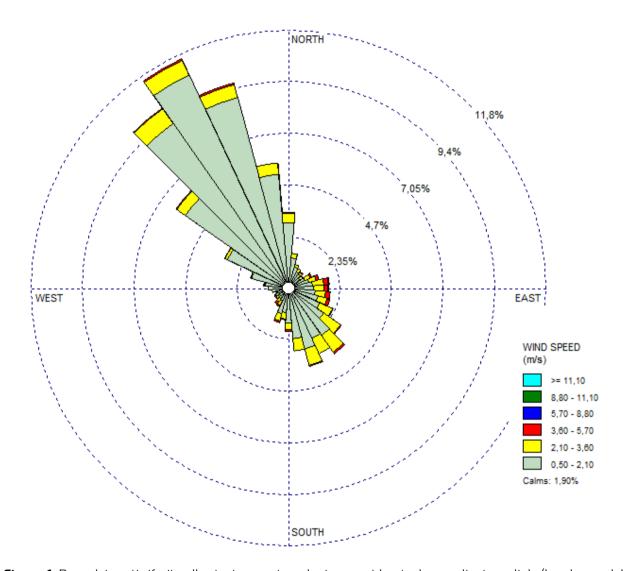
Tabella 1: Caratteristiche dei dati meteorologici, stazioni al suolo e dati in quota. Dati al suolo e in quota								
	·							
Fornitore dei dati	MAIND S.r.l.							
Periodo	Anno 2024							
Stazioni utilizzate	16045 – Udine Rivolto profilo;							
	16144 – San Pietro Capofiume profilo;							
	52-92 ERA5 (ECMWF);							
	Stazione Malo – rete ARPA Veneto.							
Coordinate UTM	16045 – Udine Rivolto profilo: 348925.00 m E, 5092563.00 m N;							
WGS-84	16144 – San Pietro Capofiume profilo: 707749.00 m E, 4947410.00 m N;							
	52-92 ERA5 (ECMWF): 702588.12 m E, 5058449.35 m N;							
	Stazione Malo – rete ARPA Veneto: 691976.66 m E, 5060187.75 m N.							
Distanza dal	16045 – Udine Rivolto profilo: 132,3 km;							
centro della	16144 – San Pietro Capofiume profilo: 116,5 km;							
griglia di calcolo	52-92 ERA5 (ECMWF): 16,2 km;							
	Stazione Malo – rete ARPA Veneto: 5,7 km.							
Altezza	10 m							
anemometro								
Parametri acquisiti	Per ciascuno dei livelli di estrazione sono stati forniti: temperatura, copertura nuvolosa, mixing height, classe di stabilità, lunghezza di Monin – obukhov, friction velocity, radiazione solare, flusso di calore, velocità convettiva di scala, pressione atmosferica.							

Sulla base di quanto riportato al punto 4 - allegato 1 degli indirizzi operativi. la percentuale ammessa di dati meteorologici invalidi dovrebbe essere inferiore al 10% su base annua e al 25% su base mensile; non deve comunque essere superiore al 20% su base annua e al 50% su base mensile.

Tabella 2: Percentuale di dati meteorologici non validi per parametro e per mese. Dati Stazione Malo – ARPA Veneto.

% dati invalidi	Dir. vento	Vel. vento	Temp. aria	Precip.	Pres.	UR
Anno	1,38%	1,38%	0,00%	0,00%	0,00%	0,00%
Gennaio	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Febbraio	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Marzo	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Aprile	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Maggio	0,94%	0,94%	0,00%	0,00%	0,00%	0,00%
Giugno	15,83%	15,83%	0,00%	0,00%	0,00%	0,00%
Luglio	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Agosto	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Settembre	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Ottobre	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Novembre	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Dicembre	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%

Tabella 3: Percentuale di dati meteorologici non validi per parametro e per mese. Dati Stazione 52-92 ERA5.


% dati invalidi	Dir. vento	Vel. vento	Temp. aria	Precip.	Pres.	UR
Anno	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Gennaio	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Febbraio	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Marzo	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Aprile	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Maggio	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Giugno	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Luglio	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Agosto	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Settembre	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Ottobre	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Novembre	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Dicembre	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%

Per tutte le stazioni si evince come la percentuale di dati assenti o non validi risulta minore dei valori soglia del $20\,\%$ per la totalità dei dati e del $50\,\%$ per i dati mensili.

3.1.1 Analisi preliminare dei dati meteorologici e anemometrici

Come si può osservare dall'analisi della rosa dei venti riportata in **Figura 1**, il vento, nel periodo considerato, ha soffiato principalmente dal settore Nord Ovest. Tale risultato permette di affermare in prima battuta che gli odori emessi dall'impianto tenderanno a disperdersi prevalentemente lungo la direttrice Nord Ovest – Sud Est, rispetto allo stesso.

Figura 1: Rosa dei venti riferita alla stazione meteorologica considerata: la coordinata radiale (lunghezza del settore circolare) rappresenta la frequenza, il colore dei cunei indica l'intensità del vento.

10

0,50 - 2,10

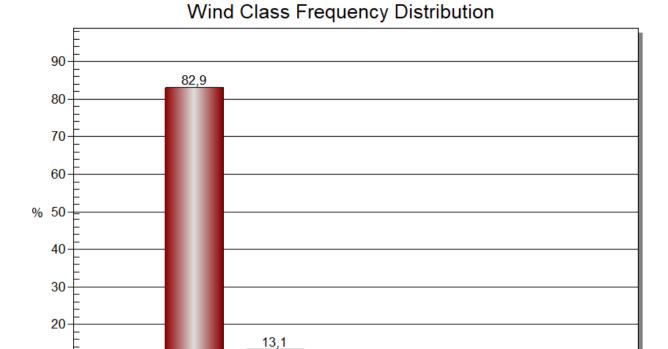
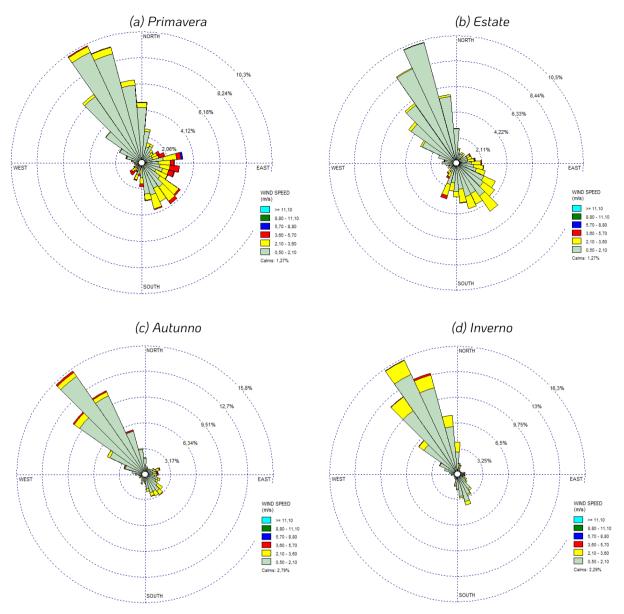


Figura 2: Distribuzione delle velocità del vento nell'anno considerato per la simulazione (2024).


) 3,60 - 5,70 (Wind Class (m/s)

5,70 - 8,80

2,10 - 3,60

Per quanto riguarda l'intensità dei venti, dal grafico della distribuzione riportato in Figura 2 si può notare come le intensità prevalenti siano nettamente inferiori a 2,10 m/s (pari al 82,9 % del tempo) con le condizioni di calma (intensità inferiore a 0,5 m/s) che si verificano nello 1,9 % dell'intervallo di tempo considerato.

Figura 3: Rose dei venti riferite alla stazione meteo per la stagione (a) primaverile, (b) estiva, (c) autunnale e (d) invernale: la coordinata radiale (lunghezza del settore circolare) rappresenta la frequenza.

Analizzando la distribuzione della direzione dei venti e le rose dei venti su base stagionale (Figura 3), si può osservare che:

- La maggior variabilità nella direzione del vento si ha nei mesi primaverili ed estivi;
- La componente predominante in tutte le stagioni è quella del settore Nord Ovest.

La Figura 4 rappresenta la distribuzione delle velocità del vento durante le varie stagioni. In tutte le stagioni le classi di velocità prevalenti sono relativamente basse (inferiori a 2,1 m/s); poco più evidente la presenza delle calme di vento in autunno.

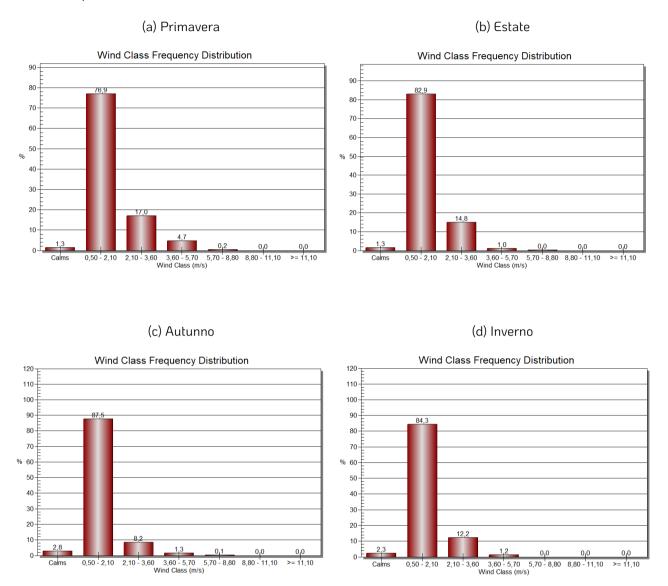


Figura 4: Distribuzione delle velocità del vento nelle varie stagioni.

3.2 Esame dei dati cartografici e dell'uso del suolo

Il modello di dispersione *CALPUFF* permette di tenere contro degli effetti indotti dall'orografia del territorio sulla dispersione. L'informazione sull'orografia viene introdotta tramite una matrice di quote altimetriche del terreno e di usi del suolo nel dominio spaziale.

Tabella 4: Informazioni cartografiche.

Tabella 4. Informazioni cartogranche.							
Sistema di coordinate							
Sistema	UTM						
Datum	WGS 84						
Fuso, zona	32 T						
Griglia di calcolo							
Origine della griglia CALMET	682752.00 m E, 5058019.00 m N						
(lower-left corner)							
Dimensione della griglia di calcolo	8 km x 8 km						
CALMET							
Passa dalla griglia CALMET	200 m						
Passo della griglia CALMET							
Numero di punti recettori di	75x75=5625 (fattore di nesting pari a 2)						
calcolo (nodi della griglia)							
Altezza dei recettori rispetto al	2 m						
suolo							
Dati territoriali							
Quote altimetriche del terreno	Dati SRTM interpolati a 100 m elaborati da USGS – EROS Data						
	Center, Sioux Falls, SD, USA. Elaborazioni mediante Maind Land						
	Use v 2.2.0.0						
Uso del suolo	CORINE Land Cover 1:100.000 agg. 2004. Elaborazioni mediante						
	Maind Land Use v 2.2.0.0						

Tale porzione di territorio include gli abitati di San Vito di Leguzzano, Marano Vicentino, Malo e Schio.

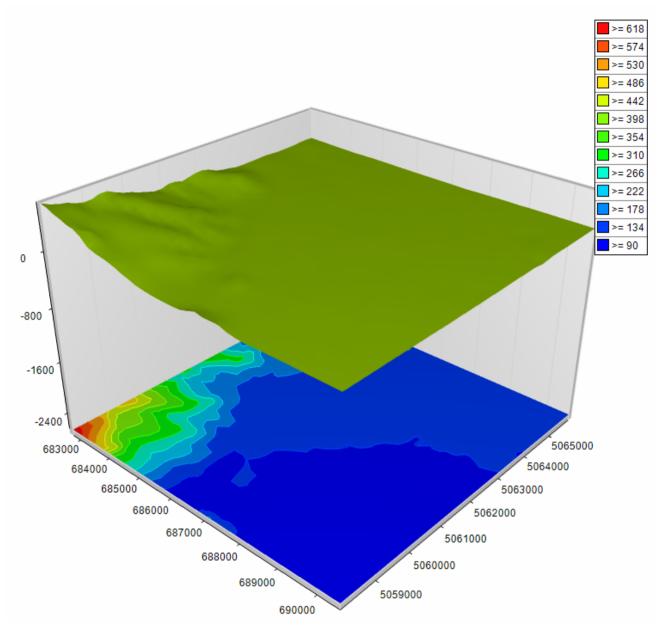


Figura 5: Altimetria del terreno nella griglia di calcolo CALMET.

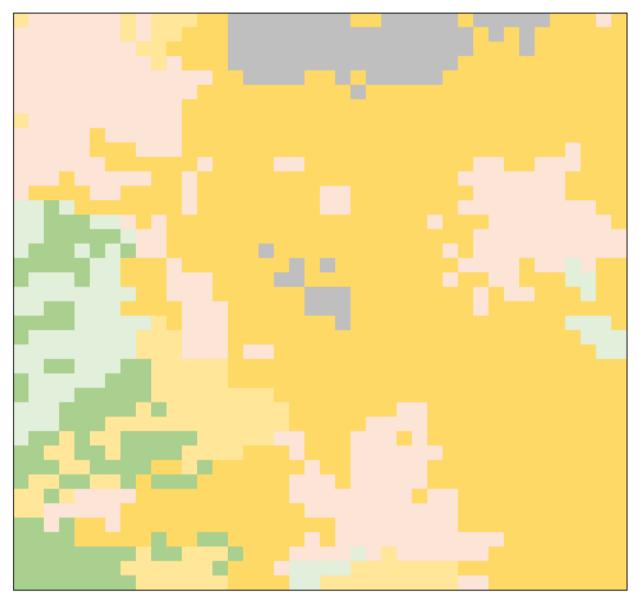


Figura 6: Varie tipologie di utilizzo del terreno.

In particolare:

- Rosa: zone urbanizzate;
- Grigio: zone industriali, commerciali;
- Verde scuro e chiaro: zone boscate e prati stabili;
- Giallo chiaro e scuro: zone agricole eterogenee e seminativi.

3.2.1 Recettori sensibili

Al fine di valutare la ricaduta sul territorio in modo puntuale sono stati individuati alcuni recettori sensibili posti entro qualche chilometro dai punti emissivi.

Per lo studio sono stati considerati un totale di tredici recettori posizionati nei pressi dell'impianto (cfr. Figura 7). Tali recettori permettono di valutare puntualmente la ricaduta dell'odore sul territorio, quantificando il valore riferito al 98° percentile delle concentrazioni di odore simulate.

Tabella 5: Recettori sensibili.

		Classe del		Distanza dalla
	Recettore	recettore ¹	Coordinate WGS-84 (km)	sorgente più
		recettore		prossima (m)
Α	Zona industriale	4	686517 E, 5061832 N	132
В	Zona industriale	4	686622 E, 5062068 N	140
С	Zona industriale	4	686806 E, 5061980 N	160
D	Case sparse	3	686384 E, 5061904 N	235
E	Case sparse	3	686676 E, 5061730 N	160
F	Case sparse	3	686285 E, 5061795 N	355
G	Area residenziale	1	686853 E, 5062296 N	420
Н	Area residenziale	1	686345 E, 5062491 N	630
ı	Area residenziale	1	686089 E, 5062061 N	555
L	Hotel Ristorante Villa i Pini	2	686959 E, 5061189 N	765
M	Chiesa	3	685495 E, 5061528 N	1190
N	Zona industriale	4	686999 E, 5061826 N	345
0	Zona industriale	4	685799 E, 5061181 N	1100

La riproduzione, modifica e utilizzo di qualsiasi parte del presente documento è consentita solo previa autorizzazione dell'Autore. M 01.08b rev2 del 17-04-2023

¹ Come da Indirizzi per l'applicazione dell'articolo 272-bis del D.lgs. 152/2006 in materia di emissioni odorigene di impianti e attività – M.A.S.E.

Figura 7: Recettori sensibili disposti sul territorio. In arancione i limiti dell'impianto.

3.3 Settaggio modellistico

Per una descrizione estesa delle caratteristiche del modello di dispersione CALPUFF, utilizzato nel presente lavoro, si rimanda all'Allegato 2.

Nella seguente tabella sono riportati i principali settaggi utilizzati per le simulazioni ivi condotte.

Tabella 6: Settaggio modellistico.

	abella 6. Settaggio modellistico.
Modello di dispersione	
Nome	CALPUFF
Versioni utilizzate	CALPUFF: 6.42
	CALMET: 6.334, level 110421
Principali parametri di controllo Ca	ALMET
Livelli verticali (cell face height)	ZFACE = 0, 20, 50, 100, 200, 500, 1000, 2000, 4000 m
Principali parametri di controllo Ca	ALPUFF
Modulo per la deposizione secca	MDRY = 0 (disattivo)
Modulo per la deposizione umida	MWET = 0 (disattivo)
Metodo di calcolo dei coefficienti	MDISP = 2 ("dispersion coefficients from internally calculated
di dispersione	sigma v, sigma w using micrometeorological variables").
	Consigliato da Barclay e Scire in Generic Guidance and
	Optimum Model Settings for the CALPUFF Modeling System
	for Inclusion into the 'Approved Methods for the Modeling and
	Assessments of Air Pollutants in NSW, Australia' (NSW Office
	of Environment and Heritage, marzo 2011).
Soglia al disotto della quale si	WSCALM = 0.5 m/s
attiva il modulo delle calme di	
vento	
Modulo per Building Downwash	Attivo

Data la vicinanza delle sorgenti con gli edifici dell'impianto si è scelto di attivare il modulo del Building Downwash. Con il termine *building downwash* si intende l'effetto indotto dalla presenza degli edifici sul movimento delle masse d'aria. Tale effetto risulta particolarmente rilevante sulla dispersione di inquinanti e di odore quando l'edificio si trova in prossimità dell'emissione, come nel caso in esame, inoltre è richiesto dalla Linea Guida della Regione Lombardia.

L'implementazione all'interno di CALPUFF dell'effetto degli edifici è stata conseguita mediante l'uso dell'applicativo BPIP (*Building Profile Input Program*), suggerito da US EPA come strumento di supporto ai modelli di dispersione.

In figura 8 sono rappresentati gli edifici presi in considerazione per il building downwash.

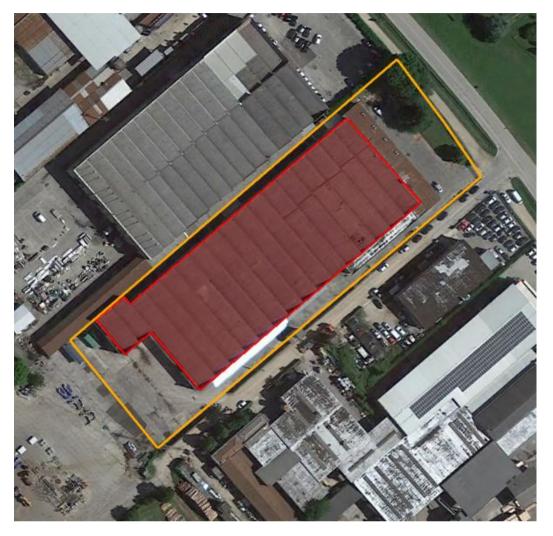


Figura 8: Edifici presi in considerazione per il building downwash.

3.4 Sorgenti emissive: fase 1

Come già indicato in precedenza, la **prima fase** del presente studio ha lo scopo di valutare l'impatto odorigeno sul territorio circostante, generato dall'impianto Equipe S.r.l.

È stata considerata una configurazione emissiva previsionale che tiene conto dello stoccaggio di fanghi di depurazione, all'interno dell'edificio esistente.

L'input emissivo è stato ricavato dai dati olfattometrici ottenuti in occasione della campagna di campionamento svolta presso il sito, in data 18 marzo 2025 (rif. **RdP LOD RT 231/25 e LOD RT 255/25**).

Durante il campionamento sono stati prelevati diversi campioni su diverse tipologie di fanghi forniti appositamente dal Cliente, che hanno evidenziato una discreta variabilità in termini di concentrazione d'odore emessa (si rimanda ai documenti prima citati per approfondimenti). Nel presente studio, in ottica cautelativa, è stato deciso di considerare tutte le sorgenti emissive come caratterizzate dalla concentrazione di odore massima misurata durante la campagna.

In tabella a seguire si riportano i risultati ottenuti:

Denominazione fangoC₀d (ou₅/m³)C₀d MAX (ou₅/m³)Rino Mastrotto: CER 040106 - Fango di depurazione
Lonigo - Zona 25430Rino Mastrotto: CER 040106 - Fango di depurazione
filtropressato Trissino - Zona 252.000Rino Mastrotto: CER 040106 - Fango di depurazione
essiccato Trissino - Zona 251.700Sicit Group 070112 - Fango di lavorazione Zona 15600

Tabella 7: Sintesi risultati dell'indagine olfattometrica.

In merito alle portate d'odore (OER), sono state calcolate come prodotto tra le portate d'odore specifiche (SOER) e l'area emissiva dei cumuli, assumendo quest'ultimi nella condizione peggiorativa, ovvero avente la superficie emissiva più estesa possibile.

In particolare, le zone di deposito fanghi sono state considerate alla loro piena capacità, dunque aventi superficie emissiva pari alla somma tra la sommità del cumulo (superficie planimetrica della baia) e la superficie frontale del cumulo (sezione apertura frontale della baia). Per una maggiore chiarezza si riportano in figura 9 le misure corrispondenti a ciascuna baia, riassunte inoltre nella tabella 7.

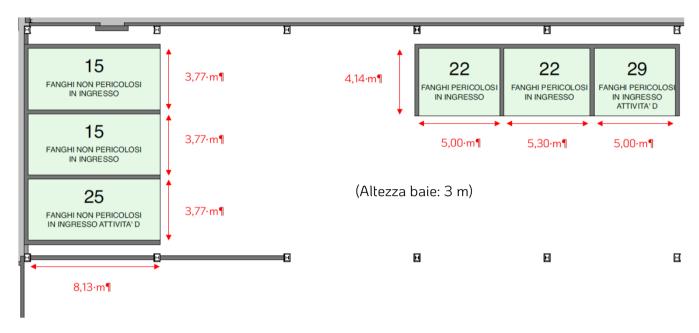


Figura 9: Dati geometrici delle baie per lo stoccaggio dei fanghi di depurazione.

Tabella 8: Dati emissivi e geometrici dei cumuli dei fanghi di depurazione.

Zona deposito fango	Superficie planimetrica (m²)	Sezione apertura frontale (m²)	Superficie emissiva cumuli (m²)	C _{od} (ou _€ / m³)	SOER (ou _E /m ² /s)	OER (ou∈/s)
BAIA 15.A	30,6	11,3	41,96	2000	7,09	297,3
BAIA 15.B	30,6	11,3	41,96	2000	7,09	297,3
BAIA 25	30,6	11,3	41,96	2000	7,09	297,3
BAIA 22.A	20,7	15	35,7	2000	7,09	253
BAIA 22.B	21,9	15,9	37,8	2000	7,09	268
BAIA 29	20,7	15	35,7	2000	7,09	253
Totale	-	-	-	-	-	1666,1

Durante il campionamento olfattometrico è stato prelevato anche un campione in corrispondenza dello sfiato dei serbatoi di fanghi liquidi da fosse settiche. Tale sorgente, tuttavia, è stata esclusa dalla modellazione poiché il cliente prevede di svolgere carichi/scarichi con frequenza settimanale e durata di circa cinque minuti ciascuno.

Tale condizione implica che la durata dell'emissione dello sfiato sia annualmente inferiore alla soglia di 52 ore stabilita dal **D.D. 309/23 del M.A.S.E**., al di sotto della quale una sorgente viene reputata non significativa.

I punti emissivi dell'impianto sono quindi costituiti da una serie di finestrature poste sul tetto. A seguito di uno studio delle planimetrie, si è deciso di tenere in considerazioni le prime quattro file di finestrature più prossime ai cumuli dei fanghi, per un totale di 12 aperture (3 aperture per ogni fila di finestre).

Ai fini di condurre il presente studio previsionale in un'ottica cautelativa, è stato deciso, nonostante le finestre siano caratterizzate da un'apertura massima di 30° , di rappresentare quest'ultime totalmente aperte. La superficie emissiva delle singole sorgenti è dunque stata posta pari alla superficie della singola finestra $(0.90 \text{ m} \times 1.90 \text{ m})$.

Tale configurazione è stata rappresentata ripartendo la portata d'odore (OER - ou_{ϵ}/s) originata dai cumuli, tra i diversi punti emissivi situati sulla copertura. Sono state, quindi, considerate 12 sorgenti puntuali, rappresentative delle finestrature aperte presenti sulla copertura dell'impianto.

Le modalità di rappresentazione di tali sorgenti e i dati emissivi sono riportati nelle tabelle 8 e 9.

Tabella 9: Modalità di rappresentazione delle sorgenti.

Modalità di rappresentazione delle sorgenti								
E1-1, E2-1, E3-1;	Sorgenti puntuali dotate di flusso proprio. Le sorgenti sono state							
E1-2, E2-2, E3-2;	considerate come puntiformi, aventi superficie equivalente pari a quella							
E1-3, E2-3, E3-3;	della singola finestra (0,90 m x 1,90 m). Tale scelta permette inoltre							
E1-4, E2-4, E3-4.	l'implementazione del <i>Building Downwash</i> . Ogni portata d'odore è stata							
	calcolate a partire dal SOER moltiplicato per la corrispettiva area emissiva							
	del cumulo di fango. Il funzionamento è stato considerato attivo 24h/24							
	per tutto l'anno.							
	La temperatura emissiva considerata è pari a quella ambiente.							

Tabella 10: Sorgenti puntuali emissive simulate — Fase 1.

Emissione	Coordinate WGS 84 (m)	Momentum ⁽²⁾	Diametro emissione (m)	Area sezione di sbocco (m²)	Altezza emissione (m)	Velocità verticale emissione (m/s)	Temperatura emissione (°C)	OER (ou _E /s)	Regime emissivo
E1-1	686643 E, 5061891 N	0	1,476	1,71	7,575	0,001	Amb.	138,8	24h/24
E2-1	686634 E, 5061901 N	0	1,476	1,71	7,575	0,001	Amb.	138,8	24h/24
E3-1	686625 E, 5061911 N	0	1,476	1,71	7,575	0,001	Amb.	138,8	24h/24
E1-2	686649 E, 5061897 N	0	1,476	1,71	7,575	0,001	Amb.	138,8	24h/24
E2-2	686640 E, 5061907 N	0	1,476	1,71	7,575	0,001	Amb.	138,8	24h/24
E3-2	686631 E, 5061916 N	0	1,476	1,71	7,575	0,001	Amb.	138,8	24h/24
E1-3	686655 E, 5061902 N	0	1,476	1,71	7,575	0,001	Amb.	138,8	24h/24
E2-3	686646 E, 5061912 N	0	1,476	1,71	7,575	0,001	Amb.	138,8	24h/24
E3-3	686637 E, 5061922 N	0	1,476	1,71	7,575	0,001	Amb.	138,8	24h/24
E1-4	686661 E, 5061907 N	0	1,476	1,71	7,575	0,001	Amb.	138,8	24h/24
E2-4	686652 E, 5061917 N	0	1,476	1,71	7,575	0,001	Amb.	138,8	24h/24
E3-4	686643 E, 5061927 N	0	1,476	1,71	7,575	0,001	Amb.	138,8	24h/24

La riproduzione, modifica e utilizzo di qualsiasi parte del presente documento è consentita solo previa autorizzazione dell'Autore. M 01.08b rev2 del 17-04-2023

² Fattore pari a 1 qualora la componente meccanica che contribuisce al momentum rising è considerata. Fattore pari a 0 in caso contrario.

Figura 10: Posizione delle sorgenti emissive.

5.1 Sorgenti emissive: fase 2

La **seconda fase** dello studio rappresenta la stima della portata d'odore specifica massima che, impiegata relativamente alla configurazione descritta nel paragrafo precedente, garantisce il rispetto dei valori di accettabilità presso i recettori, secondo quanto indicato dal **DD MASE 309/2023**.

Per ottenere questo risultato è stato impiegato un approccio "a ritroso" a partire dai risultati ottenuti dalla prima simulazione e che saranno riportati nei paragrafi a seguire.

Tra questi, è stato individuato il recettore più critico (recettore E) che risulta avere la differenza più ridotta con il valore limite ad esso assegnato. A partire da questa differenza è stato stimato un fattore moltiplicativo pari a 1,116, utile a stimare le SOER massime accettabili.

In questo modo è stato ottenuto il seguente scenario emissivo:

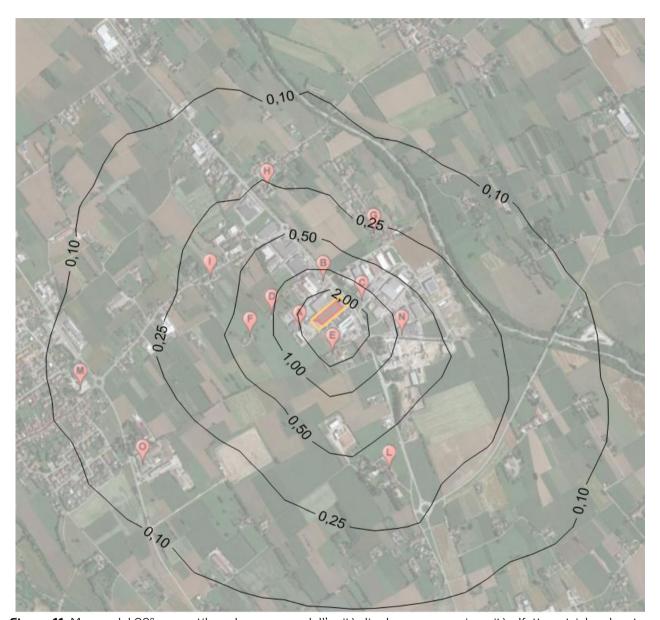
Tabella 11: Dati emissivi e geometrici dei cumuli dei fanghi di depurazione nelle due configurazioni testate.

	Fase 1			Fase 2			
	Area planimetrica + verticale	Cod	SOER	OER	SOER max (Stimata)	Cod max (Stimata)	OER max (Stimata)
BAIA 15.A	41,96			297,3	7.01	2232,759	331,9
BAIA 15.B	41,96			297,3			331,9
BAIA 25	41,96	2000	7.00	297,3			331,9
BAIA 22.A	35,70	2000	7,09	253,0 7,91	7,91		282,4
BAIA 22.B	37,84			268,2			299,4
BAIA 29	35,70			253,0			282,4
Totali				1666,1	_		1860,0

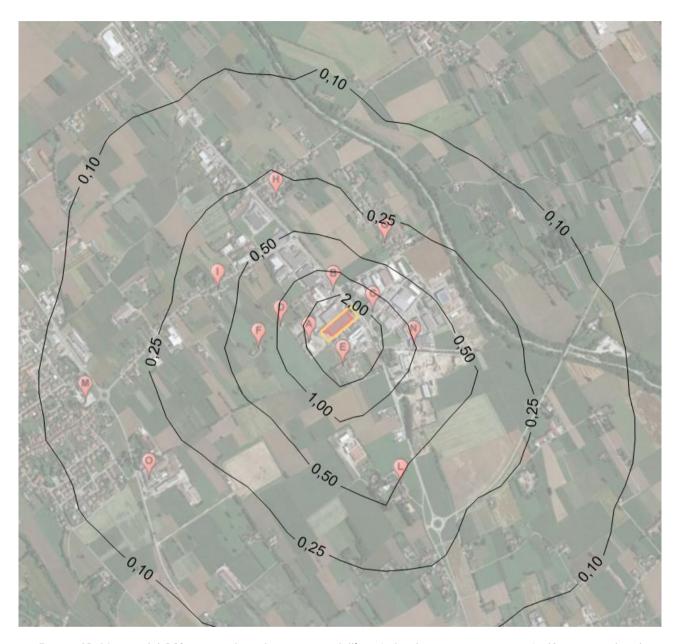
A questo punto è stata ripetuta la simulazione con le medesime impostazioni già elencate per la prima fase dello studio, intervenendo sulle portate d'odore in uscita dalle finestrature, ricalcolate sulla base di quanto appena descritto.

Tabella 12: Sorgenti puntuali emissive simulate — Fase 2.

Emissione	Coordinate WGS 84 (m)	Momentum ⁽³⁾	Diametro emissione (m)	Area sezione di sbocco (m²)	Altezza emissione (m)	Velocità verticale emissione (m/s)	Temperatura emissione (°C)	OER (ou _E /s)	Regime emissivo
E1-1	686643 E, 5061891 N	0	1,476	1,71	7,575	0,001	Amb.	155	24h/24
E2-1	686634 E, 5061901 N	0	1,476	1,71	7,575	0,001	Amb.	155	24h/24
E3-1	686625 E, 5061911 N	0	1,476	1,71	7,575	0,001	Amb.	155	24h/24
E1-2	686649 E, 5061897 N	0	1,476	1,71	7,575	0,001	Amb.	155	24h/24
E2-2	686640 E, 5061907 N	0	1,476	1,71	7,575	0,001	Amb.	155	24h/24
E3-2	686631 E, 5061916 N	0	1,476	1,71	7,575	0,001	Amb.	155	24h/24
E1-3	686655 E, 5061902 N	0	1,476	1,71	7,575	0,001	Amb.	155	24h/24
E2-3	686646 E, 5061912 N	0	1,476	1,71	7,575	0,001	Amb.	155	24h/24
E3-3	686637 E, 5061922 N	0	1,476	1,71	7,575	0,001	Amb.	155	24h/24
E1-4	686661 E, 5061907 N	0	1,476	1,71	7,575	0,001	Amb.	155	24h/24
E2-4	686652 E, 5061917 N	0	1,476	1,71	7,575	0,001	Amb.	155	24h/24
E3-4	686643 E, 5061927 N	0	1,476	1,71	7,575	0,001	Amb.	155	24h/24


La riproduzione, modifica e utilizzo di qualsiasi parte del presente documento è consentita solo previa autorizzazione dell'Autore. M 01.08b rev2 del 17-04-2023

³ Fattore pari a 1 qualora la componente meccanica che contribuisce al momentum rising è considerata. Fattore pari a 0 in caso contrario.


4 Risultati

Nella seguente sezione si riporta la mappa relativa alle curve di isoconcentrazione delle ou_{ϵ}/m^3 in ricaduta sul territorio in termini del 98° percentile su base annua relativa alla configurazione emissiva simulata. I risultati espressi tengono già conto del peak-to-mean ratio pari a 2,3, così come richiesto dal **Decreto MASE**.

Figura 11: Mappa del 98° percentile su base annua dell'unità di odore espresse in unità olfattometriche al metro cubo – incluso peak-to-mean 2,3 – Simulazione fase 1, valori misurati.

Figura 12: Mappa del 98° percentile su base annua dell'unità di odore espresse in unità olfattometriche al metro cubo – incluso peak-to-mean 2,3 – Simulazione fase 2, valori massimi.

Tabella 13: Concentrazione di odore ai recettori sensibili – incluso peak-to-mean.

	Recettore	Classe del recettore ⁴	Fase 1 98°Percentile [ou∈/m³]	Fase 2 98°Percentile [ou∈/m³] (Da SOER. Max)	Distanza dalla sorgente più prossima (m)
Α	Zona industriale	4	1,72	1,91	132
В	Zona industriale	4	1,48	1,64	140
С	Zona industriale	4	1,35	1,50	160
D	Case sparse	3	0,90	0,99	235
E	Case sparse	3	2,69	2,99	160
F	Case sparse	3	0,62	0,68	355
G	Area residenziale	1	0,31	0,27	420
Н	Area residenziale	1	0,28	0,30	630
ı	Area residenziale	1	0,32	0,35	555
L	Hotel Ristorante Villa i Pini	2	0,39	0,39	765
М	Chiesa	3	0,12	0,11	1190
N	Zona industriale	4	0,80	0,83	345
0	Zona industriale	4	0,15	0,14	1100

La riproduzione, modifica e utilizzo di qualsiasi parte del presente documento è consentita solo previa autorizzazione dell'Autore. M 01.08b rev2 del 17-04-2023

⁴ Come da Indirizzi per l'applicazione dell'articolo 272-bis del D.lgs. 152/2006 in materia di emissioni odorigene di impianti e attività – M.A.S.E.

5 Conclusioni

5.1 Commento fase 1

Prendendo a riferimento le soglie definite nelle già citate **linee di indirizzo del M.A.S.E.** (tabella 3 del documento di indirizzo), relativamente allo scenario simulato a partire dai dati misurati, non si riscontrano superamenti di tali soglie su nessun recettore.

Tabella 14: Concentrazioni di odore ai recettori sensibili – incluso peak-to-mean.

	Recettore	Classe del recettore e soglia secondo linee di indirizzo M.A.S.E.	98° percentile [ou∈/m³]
Α	Zona industriale	4	1,72
В	Zona industriale	4	1,48
С	Zona industriale	4	1,35
D	Case sparse	3	0,90
E	Case sparse	3	2,69
F	Case sparse	3	0,62
G	Area residenziale	1	0,31
Н	Area residenziale	1	0,28
I	Area residenziale	1	0,32
L	Hotel Ristorante Villa i Pini	2	0,39
М	Chiesa	3	0,12
N	Zona industriale	4	0,80
0	Zona industriale	4	0,15

Tali risultati permettono di asserire in via previsionale che non sono attesi superamenti in termini di impatto odorigeno per l'attività in progetto. Tali risultati potranno essere verificati, tramite eventuali nuove indagini e modellazioni in fase di esercizio.

5.2 Definizione dello scenario massimo emissivo (fase 2)

In base ai risultati della simulazione è stata condotta una seconda simulazione "a ritroso", al fine di stabilire quale sia portata specifica d'odore massima misurabile alle sorgenti che garantisce il rispetto dei limiti ai recettori.

Tale valore, determinato con le elaborazioni descritte nei paragrafi precedenti, è risultato pari a 7,91 ou $_{\rm E}/{\rm m}^2/{\rm s}$. Si evidenzia, a commento di questo dato, che tale valore, è riferito unicamente alla configurazione modellistica applicata, per l'anno meteo considerato. Ogni modifica e variazione di queste due componenti potrebbe indurre incrementi o diminuzioni dell'impatto in ricaduta sui recettori considerati.

6 Bibliografia

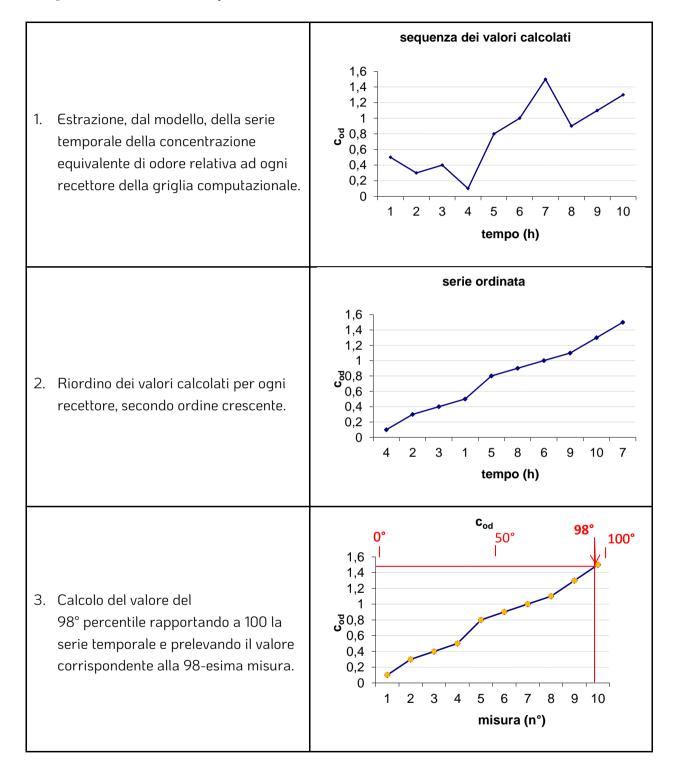
Limiti emissivi e qualità dell'aria

- IPPC-H4 (Integrated Pollution Prevention and Control) Draft. Horizontal Guidance for Odour (Environmental Agency, Bristol, 2002)
- D.g.r. 15 Febbraio 2012 n. IX/3018 "Determinazioni generali in merito alla caratterizzazione delle emissioni gassose in atmosfera derivanti da attività a forte impatto odorigeno", Regione Lombardia
- "Indirizzi per l'applicazione dell'articolo 272-bis del D.Lgs 152/2006 in materia di emissioni odorigene di impianti e attività e dei relativi allegati" - MASE, 2023.

Applicazione dei modelli di dispersione

- UNI 10796: 2000 Valutazione della dispersione in atmosfera di effluenti aeriformi Guida ai criteri di selezione dei modelli matematici
- UNI 10964: 2001 Guida alla selezione dei modelli matematici per la previsione di impatto sulla qualità dell'aria

Emissioni olfattive ed olfattometria


- UNI EN 13725: 2022 Determinazione della concentrazione di odore mediante olfattometria
- F. Lucignano, L. Sinisi, M. Vizzi (2003) Metodi di misura delle emissioni olfattive, APAT 19/2003

Utilizzo CALPUFF

- J.S. Scire, D.G. Straimaitis, R.J. Yamartino (2000) A user's guide for CALMET meteorological model Version 5, Earth Tech
- J.S. Scire, D.G. Straimaitis, R.J. Yamartino (2000) A user's quide for CALPUFF dispersion model Version 5, Earth Tech

Allegato 1: Calcolo del 98° percentile

Allegato 2: Descrizione del modello di dispersione CALPUFF

Come già accennato in precedenza, *CALPUFF* è un modello di dispersione di tipo lagrangiano a *puff*, nel quale le equazioni di conservazione di massa vengono scritte e risolte in riferimento a rilasci emissivi sferici detti *puff*, con i quali viene approssimata l'emissione continua.

Le equazioni per ogni *puff* sono determinate a partire dal campo di moto del vento. Tale campo di moto è calcolato tramite un pre-processore meteorologico (*CALMET*) che utilizza, come dati di input, i dati provenienti dall'archivio meteorologico e dalla cartografia riferiti al sito in esame e relativi al periodo di cui si vuole ottenere la simulazione. Il file di *output* di *CALMET* viene processato, mediante *CALPUFF*, assieme ai dati relativi alle emissioni, per ottenere i campi di concentrazione desiderati.

Lo schema di funzionamento del modello CALPUFF è riportato in Figura.

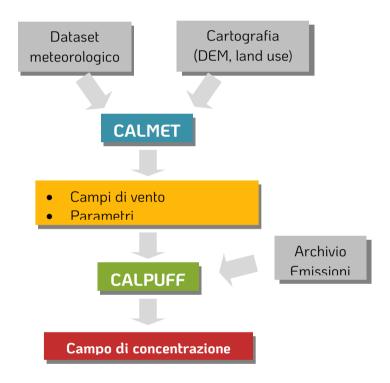


Figura 13: schema di funzionamento del modello di dispersione CALPUFF

CALMET: Pre-processore meteorologico

Il preprocessore *CALMET* è in grado di elaborare i dati meteorologici e orografici, per determinare il campo di vento tridimensionale ed altri parametri meteorologici fondamentali per la simulazione della dispersione. A tal fine, *CALMET* necessita, come dati di *input*, i valori medi orari relativi ai seguenti dati meteorologici osservati al suolo:

- direzione ed intensità del vento;
- temperatura e umidità relativa dell'aria;

- pressione atmosferica;
- copertura del cielo;
- precipitazioni;

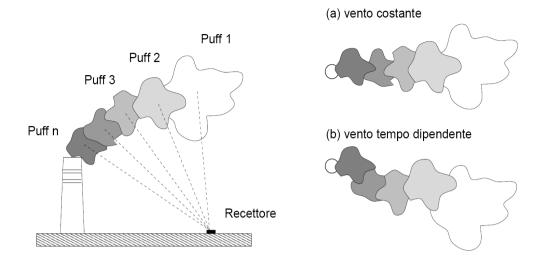
dei valori dei profili verticali, ottenuti tramite radiosondaggi, di:

- direzione ed intensità del vento;
- temperatura e pressione;

ed inoltre dei dati relativi al terreno, in particolare

- altimetria;
- uso del suolo.

Attraverso l'elaborazione di questi dati, *CALMET* è in grado di determinare il valore nel tempo e nello spazio di:


- componenti tridimensionali del vento;
- altezza di rimescolamento;
- lunghezza di Monin-Obukhov;
- classe di stabilità atmosferica, secondo Pasquille-Gifford.

Caratteristiche del puff e concentrazioni al suolo

Ogni puff emesso dalle sorgenti in esame può essere descritto mediante:

- o una massa della sostanza simulata Q_k , contenuta al suo interno;
- o un baricentro (o centroide) che individua la sua posizione nello spazio;
- o una condizione iniziale di moto, funzione della temperatura e della velocità allo sbocco dell'emissione;
- o una dimensione spaziale che varierà durante il moto del puff a causa dei fenomeni diffusivi e di turbolenza

Dopo il suo rilascio in atmosfera, ogni *puff* subisce l'azione del campo di vento tridimensionale che ne fa variare la posizione e ne determina il *trasporto*: il suo percorso sarà dunque regolato da direzione ed intensità dei venti locali. Durante tale percorso, ogni *puff* è inoltre soggetto a fenomeni diffusivi e turbolenti che ne faranno variare la dimensione. In particolare, i vortici di media e piccola dimensione, generati a livello dello strato limite planetario, vengono inglobati all'interno del *puff* facendone aumentare la dimensione e, nel contempo, diminuendone la concentrazione di odore.

Figura 14: dispersione di un pennacchio rappresentato come somma di emissioni discrete. Il vento ne determina il trasporto e le turbolenze su scala locale ne fanno variare la dimensione. La concentrazione al suolo viene calcolata in corrispondenza ad alcuni recettori discreti.

La ricaduta dell'odore al suolo viene calcolata in *CALPUFF* sommando il contributo di ogni singolo *puff* su alcuni generici punti dello spazio denominati *recettori*. Fissando un sistema di riferimento cartesiano centrato nel pacchetto emesso, la posizione del generico recettore è identificata dalle due coordinate d_c e d_a , che rappresentano rispettivamente la distanza trasversale e longitudinale rispetto alla direzione del vento. La concentrazione C della specie simulata in un generico recettore a distanza (d_c, d_a) dal *puff* è descritta dall'equazione:

$$C = \frac{Q_k}{2\pi\sigma_x\sigma_y} g \exp\left[-\frac{d_a^2}{2\sigma_x^2}\right] \exp\left[-\frac{d_c^2}{2\sigma_y^2}\right]$$

dove il termine q è definito dalla:

$$g = \frac{2}{\sqrt{2\pi}\sigma_z} \sum_{n=-\infty}^{\infty} \exp\left[-\frac{\left(H_e + 2nh\right)^2}{2\sigma_z^2}\right]$$

con:

- *C* è la concentrazione di odore al suolo;
- Q_k è la massa della sostanza simulata del generico *puff k*;
- σ_x , $\sigma_y e \sigma_z$ sono i coefficienti di dispersione rispettivamente lungo la direzione del vento, la sua perpendicolare orizzontale e la sua perpendicolare verticale;
- q è il contributo verticale della dispersione;
- H_e è la quota del baricentro del *puff*;
- h è l'altezza di rimescolamento.

Figura 15: proiezione del puff sul piano di un generico recettore

La massa di odore Q_k del generico *puff k* può essere calcolata a partire dal tasso di emissione. Supponendo che l'emissione sia costante con tasso di emissione pari a q e che nell'intervallo di tempo t_2 - t_1 siano stati emessi N *puff*, si può scrivere la seguente equazione:

$$Q_k = \frac{q(t_2 - t_1)}{N}$$

Nel corso del tempo, la massa della specie simulata Q_k del generico puff può variare a causa di alcuni fenomeni che ne determinano l'impoverimento. Con la deposizione umida le sostanze simulate possono venire inglobate all'interno delle particelle aerodisperse nelle nubi, nella pioggia e nella neve con successivo trasferimento al suolo mediante precipitazione. La deposizione secca si verifica invece in assenza di umidità ed il trasferimento al suolo avviene per sedimentazione o per impatto. Infine, alcune specie possono andare incontro in atmosfera a reazioni chimiche con conseguente trasformazione della sostanza in uno o più composti diversi.

Allegato 3: Input e principali configurazioni modellistiche (Tabella basata su allegato A1 Decreto MASE n.309 del 28.06.2023)

SORGENTI DI EMISSIONE		
Tipologia e numero		
Numero sorgenti convogliate puntiformi	12	
Numero sorgenti areali attive	0	
Numero sorgenti areali passive	0	
Numero sorgenti volumetriche	0	
ALTRO – NOTE		

SORGENTI CONVOGLIATE PUNTIFORMI		
Coordinate geografiche, geometria, caratteristiche effluente		
Id Sorgente E1_1		
Coordinata centro X (m) UTM 32	686643	
Coordinata centro Y (m) UTM 32	5061891	
Quota base (m s.l.m)	146	
Altezza punto di emissione (m)	7,575	
Forma sezione di sbocco (circolare, quadrata)	Circolare	
Caratteristiche punto emissivo (verticale, orizzontale)	Camino con copertura	
Area sezione di sblocco (m2)	1,71	
Calcolo del Building Downwash	Sì. Calcolo dei coefficienti BDW tramite la	
	routine BPIP integrata	
Profile temperale delle emissioni	Emissioni variabili specificate su file esterno:	
Profilo temporale delle emissioni	rev00_25_E1_1.ptemv	
Temperatura effluente (°K)	Amb.	
Velocità effluente (m/s)	0,001	
Portata volumetrica effluente (Nm3/h)	Dato presente su file esterno	
Portata volumetrica effluente a 20°C (m3/s)	Dato presente su file esterno	
Concentrazione (odori in ouE/m3, altri in g/m3)	Dato presente su file esterno	
Rate di emissione (odori in ouE/s, altri in g/s)	Dato presente su file esterno	
Altro - Note		
Id Sorgente	E2_1	
Coordinata centro X (m) UTM 32	686634	
Coordinata centro Y (m) UTM 32	5061901	
Quota base (m s.l.m)	146	

Altezza punto di emissione (m)	7,575
Forma sezione di sbocco (circolare, quadrata)	Circolare
Caratteristiche punto emissivo (verticale, orizzontale)	Camino con copertura
Area sezione di sblocco (m2)	1,71
Calcolo del Building Downwash	Sì. Calcolo dei coefficienti BDW tramite la
Calculo del Bullullig Bownwasti	routine BPIP integrata
Profilo temporale delle emissioni	Emissioni variabili specificate su file esterno:
Tronto temporale delle emissioni	rev00_25_E2_1.ptemv
Temperatura effluente (°K)	Dato presente su file esterno
Velocità effluente (m/s)	Dato presente su file esterno
Portata volumetrica effluente (Nm3/h)	Dato presente su file esterno
Portata volumetrica effluente a 20°C (m3/s)	Dato presente su file esterno
Concentrazione (odori in ouE/m3, altri in g/m3)	Dato presente su file esterno
Rate di emissione (odori in ouE/s, altri in g/s)	Dato presente su file esterno
Altro - Note	
Id Sorgente	E3_1
Coordinata centro X (m) UTM 32	686625
Coordinata centro Y (m) UTM 32	5061911
Quota base (m s.l.m)	146
Altezza punto di emissione (m)	7,575
Forma sezione di sbocco (circolare, quadrata)	Circolare
Caratteristiche punto emissivo (verticale, orizzontale)	Camino con copertura
Area sezione di sblocco (m2)	1,71
Calcolo del Building Downwash	Sì. Calcolo dei coefficienti BDW tramite la
Calculated Building Bownwash	routine BPIP integrata
Profilo temporale delle emissioni	Emissioni variabili specificate su file esterno:
Tromo temporale delle emissioni	rev00_25_E3_1.ptemv
Temperatura effluente (°K)	Dato presente su file esterno
Velocità effluente (m/s)	Dato presente su file esterno
Portata volumetrica effluente (Nm3/h)	Dato presente su file esterno
Portata volumetrica effluente a 20°C (m3/s)	Dato presente su file esterno
Concentrazione (odori in ouE/m3, altri in g/m3)	Dato presente su file esterno
Rate di emissione (odori in ouE/s, altri in g/s)	Dato presente su file esterno
Altro - Note	
Id Sorgente	E1_2

Coordinata centro X (m) UTM 32	686649
Coordinata centro Y (m) UTM 32	5061897
Quota base (m s.l.m)	146
Altezza punto di emissione (m)	7,575
Forma sezione di sbocco (circolare, quadrata)	Circolare
Caratteristiche punto emissivo (verticale, orizzontale)	Camino con copertura
Area sezione di sblocco (m2)	1,71
Calcala dal Building Daymysch	Sì. Calcolo dei coefficienti BDW tramite la
Calcolo del Building Downwash	routine BPIP integrata
Drafila tamparala della amissioni	Emissioni variabili specificate su file esterno:
Profilo temporale delle emissioni	rev00_25_E1_2.ptemv
Temperatura effluente (°K)	Dato presente su file esterno
Velocità effluente (m/s)	Dato presente su file esterno
Portata volumetrica effluente (Nm3/h)	Dato presente su file esterno
Portata volumetrica effluente a 20°C (m3/s)	Dato presente su file esterno
Concentrazione (odori in ouE/m3, altri in g/m3)	Dato presente su file esterno
Rate di emissione (odori in ouE/s, altri in g/s)	Dato presente su file esterno
Altro - Note	
Id Sorgente	E2_2
Coordinata centro X (m) UTM 32	686640
Coordinata centro Y (m) UTM 32	5061907
Quota base (m s.l.m)	146
Altezza punto di emissione (m)	7,575
Forma sezione di sbocco (circolare, quadrata)	Circolare
Caratteristiche punto emissivo (verticale, orizzontale)	Camino con copertura
Area sezione di sblocco (m2)	1,71
Chale di D. Titas Dana ada	Sì. Calcolo dei coefficienti BDW tramite la
Calcolo del Building Downwash	routine BPIP integrata
Due (ile benero en la della enciazioni	Emissioni variabili specificate su file esterno:
Profilo temporale delle emissioni	rev00_25_E2_2.ptemv
Temperatura effluente (°K)	Dato presente su file esterno
Velocità effluente (m/s)	Dato presente su file esterno
Portata volumetrica effluente (Nm3/h)	Dato presente su file esterno
	Dato presente sa me esterno
Portata volumetrica effluente a 20°C (m3/s)	Dato presente su file esterno
Portata volumetrica effluente a 20°C (m3/s) Concentrazione (odori in ouE/m3, altri in g/m3)	·

Altro - Note	
<u> </u>	
Id Sorgente	E3_2
Coordinata centro X (m) UTM 32	686631
Coordinata centro Y (m) UTM 32	5061916
Quota base (m s.l.m)	146
Altezza punto di emissione (m)	7,575
Forma sezione di sbocco (circolare, quadrata)	Circolare
Caratteristiche punto emissivo (verticale, orizzontale)	Camino con copertura
Area sezione di sblocco (m2)	1,71
Calcolo del Building Downwash	Sì. Calcolo dei coefficienti BDW tramite la
Calculo del Bullullig Bowliwasii	routine BPIP integrata
Profilo temporale delle emissioni	Emissioni variabili specificate su file esterno:
	rev00_25_E3_2.ptemv
Temperatura effluente (°K)	Dato presente su file esterno
Velocità effluente (m/s)	Dato presente su file esterno
Portata volumetrica effluente (Nm3/h)	Dato presente su file esterno
Portata volumetrica effluente a 20°C (m3/s)	Dato presente su file esterno
Concentrazione (odori in ouE/m3, altri in g/m3)	Dato presente su file esterno
Rate di emissione (odori in ouE/s, altri in g/s)	Dato presente su file esterno
Altro - Note	
Id Sorgente	E1_3
Coordinata centro X (m) UTM 32	686655
Coordinata centro Y (m) UTM 32	5061902
Quota base (m s.l.m)	146
Altezza punto di emissione (m)	7,575
Forma sezione di sbocco (circolare, quadrata)	Circolare
Caratteristiche punto emissivo (verticale, orizzontale)	Camino con copertura
Area sezione di sblocco (m2)	1,71
Calcolo del Building Downwash	Sì. Calcolo dei coefficienti BDW tramite la
	routine BPIP integrata
Drafila tamparala della amissioni	Emissioni variabili specificate su file esterno:
Profilo temporale delle emissioni	rev00_25_E1_3.ptemv
Temperatura effluente (°K)	Dato presente su file esterno
Velocità effluente (m/s)	Dato presente su file esterno
Portata volumetrica effluente (Nm3/h)	Dato presente su file esterno

Portata volumetrica effluente a 20°C (m3/s)	Dato presente su file esterno
Concentrazione (odori in ouE/m3, altri in g/m3)	Dato presente su file esterno
Rate di emissione (odori in ouE/s, altri in g/s)	Dato presente su file esterno
Altro - Note	
Id Sorgente	E2_3
Coordinata centro X (m) UTM 32	686646
Coordinata centro Y (m) UTM 32	5061912
Quota base (m s.l.m)	146
Altezza punto di emissione (m)	7,575
Forma sezione di sbocco (circolare, quadrata)	Circolare
Caratteristiche punto emissivo (verticale, orizzontale)	Camino con copertura
Area sezione di sblocco (m2)	1,71
Calcolo del Building Downwash	Sì. Calcolo dei coefficienti BDW tramite la
Calculo del Bullding Downwash	routine BPIP integrata
Drafile temperale della emissioni	Emissioni variabili specificate su file esterno:
Profilo temporale delle emissioni	rev00_25_E2_3.ptemv
Temperatura effluente (°K)	Dato presente su file esterno
Velocità effluente (m/s)	Dato presente su file esterno
Portata volumetrica effluente (Nm3/h)	Dato presente su file esterno
Portata volumetrica effluente a 20°C (m3/s)	Dato presente su file esterno
Concentrazione (odori in ouE/m3, altri in g/m3)	Dato presente su file esterno
Rate di emissione (odori in ouE/s, altri in g/s)	Dato presente su file esterno
Altro - Note	
Id Sorgente	E3_3
Coordinata centro X (m) UTM 32	686637
Coordinata centro Y (m) UTM 32	5061922
Quota base (m s.l.m)	146
Altezza punto di emissione (m)	7,575
Forma sezione di sbocco (circolare, quadrata)	Circolare
Caratteristiche punto emissivo (verticale, orizzontale)	Camino con copertura
Area sezione di sblocco (m2)	1,71
Calcala dal Building Day and tash	Sì. Calcolo dei coefficienti BDW tramite la
Calcolo del Building Downwash	routine BPIP integrata
Profile temperale delle emissioni	Emissioni variabili specificate su file esterno:
Profilo temporale delle emissioni	rev00_25_E3_3.ptemv

Temperatura effluente (°K)	Dato presente su file esterno
Velocità effluente (m/s)	Dato presente su file esterno
Portata volumetrica effluente (Nm3/h)	Dato presente su file esterno
Portata volumetrica effluente a 20°C (m3/s)	Dato presente su file esterno
Concentrazione (odori in ouE/m3, altri in g/m3)	Dato presente su file esterno
Rate di emissione (odori in ouE/s, altri in g/s)	Dato presente su file esterno
Altro - Note	
Id Sorgente	E1_4
Coordinata centro X (m) UTM 32	686661
Coordinata centro Y (m) UTM 32	5061907
Quota base (m s.l.m)	146
Altezza punto di emissione (m)	7,575
Forma sezione di sbocco (circolare, quadrata)	Circolare
Caratteristiche punto emissivo (verticale, orizzontale)	Camino con copertura
Area sezione di sblocco (m2)	1,71
Calcolo del Building Downwash	Sì. Calcolo dei coefficienti BDW tramite la
Calcolo del Bullding Downwash	routine BPIP integrata
Profilo temporale delle emissioni	Emissioni variabili specificate su file esterno:
Tromo temporale delle emissioni	rev00_25_E1_4.ptemv
Temperatura effluente (°K)	Dato presente su file esterno
Velocità effluente (m/s)	Dato presente su file esterno
Portata volumetrica effluente (Nm3/h)	Dato presente su file esterno
Portata volumetrica effluente a 20°C (m3/s)	Dato presente su file esterno
Concentrazione (odori in ouE/m3, altri in g/m3)	Dato presente su file esterno
Rate di emissione (odori in ouE/s, altri in g/s)	Dato presente su file esterno
Altro - Note	
Id Sorgente	E2_4
Coordinata centro X (m) UTM 32	686652
Coordinata centro Y (m) UTM 32	5061917
Quota base (m s.l.m)	146
Altezza punto di emissione (m)	7,575
Forma sezione di sbocco (circolare, quadrata)	Circolare
Caratteristiche punto emissivo (verticale, orizzontale)	Camino con copertura
Area sezione di sblocco (m2)	1,71

Calcolo del Building Downwash	Sì. Calcolo dei coefficienti BDW tramite la
	routine BPIP integrata
Due file become alle delle essienti	Emissioni variabili specificate su file esterno:
Profilo temporale delle emissioni	rev00_25_E2_4.ptemv
Temperatura effluente (°K)	Dato presente su file esterno
Velocità effluente (m/s)	Dato presente su file esterno
Portata volumetrica effluente (Nm3/h)	Dato presente su file esterno
Portata volumetrica effluente a 20°C (m3/s)	Dato presente su file esterno
Concentrazione (odori in ouE/m3, altri in g/m3)	Dato presente su file esterno
Rate di emissione (odori in ouE/s, altri in g/s)	Dato presente su file esterno
Altro - Note	
Id Sorgente	E3_4
Coordinata centro X (m) UTM 32	686643
Coordinata centro Y (m) UTM 32	5061927
Quota base (m s.l.m)	146
Altezza punto di emissione (m)	7,575
Forma sezione di sbocco (circolare, quadrata)	Circolare
Caratteristiche punto emissivo (verticale, orizzontale)	Camino con copertura
Area sezione di sblocco (m2)	1,71
Calcala dal Duildina Day was scale	Sì. Calcolo dei coefficienti BDW tramite la
Calcolo del Building Downwash	routine BPIP integrata
Due file home revele delle engineioni	Emissioni variabili specificate su file esterno:
Profilo temporale delle emissioni	rev00_25_E3_4.ptemv
Temperatura effluente (°K)	Dato presente su file esterno
Velocità effluente (m/s)	Dato presente su file esterno
Portata volumetrica effluente (Nm3/h)	Dato presente su file esterno
Portata volumetrica effluente a 20°C (m3/s)	Dato presente su file esterno
Concentrazione (odori in ouE/m3, altri in g/m3)	Dato presente su file esterno
Rate di emissione (odori in ouE/s, altri in g/s)	Dato presente su file esterno
Altro - Note	
	t end of the second of the sec

SIMULAZIONE		
Input meteorologici		
Tipologia dati	Campi meteorologici 3D calcolati da CALMET	
Dominio temporale (daa)	01/01/2024 00:00:00 <> 01/01/2025 01:00:00	

Nome modello meteo diagnostico	CALMET
Numero di celle	40 x 40
Dimensione celle (m)	200 x 200
Dimensione dominio di calcolo (m)	8000 x 8000
Coordinata X (m) vertice SO	682752
Coordinata Y (m) vertice SO	5058019
Numero di livelli verticali	9 (0 - 20 - 50 - 100 - 200 - 500 - 1000 - 2000 - 4000)
% dati validi di VV	Dati disponibili nel report fornitura dati meteorologici
% dati validi di DV	Dati disponibili nel report fornitura dati meteorologici
% dati di VV < 0.5 m/s (calme di vento)	Dati disponibili nel report fornitura dati meteorologici
VV min	Dati disponibili nel report fornitura dati meteorologici
VV max	Dati disponibili nel report fornitura dati meteorologici
VV media	Dati disponibili nel report fornitura dati meteorologici
Moda di VV	Dati disponibili nel report fornitura dati meteorologici
Mediana di VV	Dati disponibili nel report fornitura dati meteorologici
25° percentile di VV	Dati disponibili nel report fornitura dati meteorologici
75° percentile di VV	Dati disponibili nel report fornitura dati meteorologici
Altro - Note	

SIMULAZIONE		
Tipologia modello e parametrizzazione		
N	MMS Calpuff v.1.21.0.0 - CALPUFF version	
Nome e versione software utilizzato	6.42 level 110325	
Nome del calcolo	rev00_25 rev00_25	
Calcolo del Building Down Wash	Calcolato con modello ISC. Vedere le schede	
	delle singole sorgenti per l'utilizzo.	
Calcolo del Plume Rise	Sì	
Calcolo della Deposizione Secca	Odore: No	
Calcolo della Deposizione Umida	Odore: No	
Reazioni Chimiche		
Metodo utilizzato per il calcolo dei coefficienti di	Coefficienti di dispersione calcolati utilizzando	
dispersione	le variabili micrometeorologiche.	
ALTRO . NOTE		

SIMULAZIONE		
Parametri valutazione Edifici ed altre strutture per calcolo building downwash (se applicabile)		
Id Sorgente	E1_1	

	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
Altezza (m)	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
Larghezza (m)	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	123,75; 108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31;
	128,84; 133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135; 123,75;
	108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31; 128,84;
Lunghezza (m)	133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135;
	Il modello ISC utilizzato per il calcolo del BDW non utilizza questi
Curigriezza (III)	parametri
ALTRO - NOTE	
Id Sorgente	E2_1
	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
Altezza (m)	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	123,75; 108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31;
Larghezza (m)	128,84; 133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135; 123,75;
cargnezza (m)	108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31; 128,84;
	133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135;
Lunghezza (m)	Il modello ISC utilizzato per il calcolo del BDW non utilizza questi
_	parametri
ALTRO - NOTE	
Id Sorgente	E3_1
	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
Altezza (m)	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	123,75; 108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31;
Larghezza (m)	128,84; 133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135; 123,75;
cai griezza (iii)	108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31; 128,84;
	133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135;
Lunghezza (m)	Il modello ISC utilizzato per il calcolo del BDW non utilizza questi
	parametri
ALTRO - NOTE	
Id Sorgente	E1_2

	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
Altezza (m)	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
Larghezza (m)	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	123,75; 108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31;
	128,84; 133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135; 123,75;
	108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31; 128,84;
Lunghezza (m)	133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135;
	Il modello ISC utilizzato per il calcolo del BDW non utilizza questi
Curigriezza (III)	parametri
ALTRO - NOTE	
Id Sorgente	E2_2
	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
Altezza (m)	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	123,75; 108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31;
Larghezza (m)	128,84; 133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135; 123,75;
cargnezza (m)	108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31; 128,84;
	133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135;
Lunghezza (m)	Il modello ISC utilizzato per il calcolo del BDW non utilizza questi
_	parametri
ALTRO - NOTE	
Id Sorgente	E3_2
	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
Altezza (m)	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	123,75; 108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31;
Larghezza (m)	128,84; 133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135; 123,75;
Cargnezza (III)	108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31; 128,84;
	133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135;
Lunghezza (m)	Il modello ISC utilizzato per il calcolo del BDW non utilizza questi
	parametri
ALTRO - NOTE	
Id Sorgente	E1_3

Altezza (m)	7,32; 7,32;	
Larghezza (m)	123,75; 108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31; 128,84; 133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135; 123,75; 108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31; 128,84; 133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135;	
Lunghezza (m)	Il modello ISC utilizzato per il calcolo del BDW non utilizza questi parametri	
ALTRO - NOTE		
Id Sorgente	E2_3	
Altezza (m)	7,32; 7,32;	
Larghezza (m)	123,75; 108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31; 128,84; 133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135; 123,75; 108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31; 128,84; 133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135;	
Lunghezza (m)	Il modello ISC utilizzato per il calcolo del BDW non utilizza questi parametri	
ALTRO - NOTE		
Id Sorgente	E3_3	
Altezza (m)	7,32; 7,32;	
Larghezza (m)	123,75; 108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31; 128,84; 133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135; 123,75; 108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31; 128,84; 133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135;	
Lunghezza (m)	Il modello ISC utilizzato per il calcolo del BDW non utilizza questi parametri	
ALTRO - NOTE		
Id Sorgente	E1 /	
ia sorgenie	E1_4	

Altezza (m)	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
Larghezza (m)	123,75; 108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31;
	128,84; 133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135; 123,75;
	108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31; 128,84;
	133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135;
/ .	Il modello ISC utilizzato per il calcolo del BDW non utilizza questi
Lunghezza (m)	parametri
ALTRO - NOTE	
Id Sorgente	E2_4
	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
Altezza (m)	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	123,75; 108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31;
Larghezza (m)	128,84; 133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135; 123,75;
Cargnezza (III)	108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31; 128,84;
	133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135;
Lunghezza (m)	Il modello ISC utilizzato per il calcolo del BDW non utilizza questi
Cangnezza (III)	parametri
ALTRO - NOTE	
Id Carranta	52.4
Id Sorgente	E3_4
A11 /)	7,32; 7
Altezza (m)	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32; 7,32;
	123,75; 108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31;
Larghezza (m)	128,84; 133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135; 123,75;
	108,73; 90,41; 69,35; 51,58; 71,46; 89,17; 104,17; 116; 124,31; 128,84;
	133,33; 135,99; 137,48; 143,41; 144,99; 142,15; 135;
Lunghezza (m)	Il modello ISC utilizzato per il calcolo del BDW non utilizza questi
	parametri
ALTRO - NOTE	

SIMULAZIONE			
Orografia ed uso del suolo			
Risoluzione originaria DTM (m)	Dati disponibili nel report fornitura dati meteorologici		
Fonte dati DTM	Dati disponibili nel report fornitura dati meteorologici		
Risoluzione originaria uso suolo	Dati disponibili nel report fornitura dati meteorologici		
Fonte dati uso del suolo	Dati disponibili nel report fornitura dati meteorologici		
ALTRO – NOTE			

SIMULAZIONE				
Griglia di calcolo				
Tipologia griglia	Regolare			
Numero di celle	75 x 75			
Dimensione celle	100,0 DX(m) x 100,0 DY(m)			
Dimensione dominio di calcolo	7400,0 (m) x 7400,0 (m)			
Coordinate vertice Sud Ovest	683002 X(m); 5058269 Y(m) 32N			
ALTRO – NOTE				